Physics 604
Problem Set 6
Due Dec. 09, 2010

1) a) First we need to recall that the current density is
J(r,¢,7')= I5(r’—a)5(z’)(é’) =16(r'-a)5(z")(-sin@'X+cos@'y)

Therefore, by Egn. 3.148
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where I refer to the greater or lesser of aand r.
>

b) In this part simply use the expansion in Problem Set 4 (Jackson problem 3.16)
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c) Clearly

0 lag, .
B, =—8—A29:ﬂ°7_(|:ksm(kz) I, (kr.) K, (kr.)dk

—ﬂ"—laj'kcos(kz) l,(kr)K,(ka)dk r<a
4 0

L _10(A)_
IR P - -
o —ﬂo—lajkcos(kz)Il(ka)KO(kr)dk r>a
4 0
/Uola'Oc —kz
ke™J,(kr)J,(ka)dk z>0
52 0013, )
B':_E: la %
ﬂ(’zaj—keszl(kr)Jl(ka)dk 2<0
0
_10(rA) _mlat,
BZ_FT_OTgke 3, (kr)J, (ka)dk

where for example we use

10(r3, (kr)) 1g{rmﬁ_§ff>j:k%(kr).

Evaluating at I = O implies a non-zero result only for B, as J;(0)=1,(0) =1, and the other

functions vanish there. The final results for the integration may be obtained from either 3.150
or problem 3.16. Differentiating inside the integral signs of these expansions yields
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Therefore, either case is consistent with the simple Biot-Savart Law calculation
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2) a) By Equation 5.7 in the text, the total force is

= IJ-drx B.

Most answers used an argument like this

= IB,fn,za’ = IB fra’sin g, sin g,

Likewise

F, = B,47a’sin 6, cos ¢,

cover formula

cover formula

F = 1B,B7a’ [sin §, sin ¢,% +sin 6, cos ¢, V]

Another way is to evaluate the integral directly. The key is to figure out a correct

parameterization of the circle. One way is to use two rotation matrices. An equation for the

circle is
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Note that this expression for the force is exactly consistent with because

m-B = | 7a’B, (sin 6, cos ¢, (1+ BY)+sin 6, cos ¢, (1+ px))
?(m- I§) = 1 7a’B, S (sin g, sin ¢, X +sin 6, cos 4, ¥).

b) Because | have expanded the line integral out, now | can obtain the torque exactly too!

Looking at this expression, non-zero contributions come only from terms that have cos” & or
sin? @ in the expansion. But both Xand dl have single powers of C0S# and Sin @ in their
expansion. This means that any term in the magnetic field involving £ must integrate to zero in
the expansion for the circular loop because of the single powers of C0S& and Sin @ in these
terms which integrate to zero on cos? @ , sin? @, orsin @cos @ | Therefore for the circular loop

the torque is exactly
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Of course, non-circular loops would not produce such a simple result. It is an exercise for the

reader to show the magnetic moment integrates up in the way indicated.

3) a) For
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there is only a Z component of the vector potential A, . Outside of the current sheet, A, must

solve the 2-D Laplace equation
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The possible SIN MA@ terms in the expansion vanish by the form of the current density. If the
permeability of the iron is infinite, the radial magnetic induction must vanishat r =R’ :
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The potential only has an X = C0S & dependence. Taking the curl in Cartesian components gives

the answer quickest

That the sign is correct follows directly from applying the right-hand rule to the original current
density.

b) The magnetic energy per unit length inside R is easy to compute because the field is uniform
there
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The magnetic energy per unit length outside is more laborious but straightforward
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Solving for the potential in Problem 5.30 gives (assuming N current turns)
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The equal partition of the energy without the iron gets shifted so that more field is inside the
coil and less field is outside the coil with the iron present.

¢) The total magnetic energy per unit length is
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The inductance per length is twice the magnetic energy per length divided by the total current
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Let the “bar” coordinates of loop 1 be referenced to an origin attached to the loop I:l, define

%1 Xl—l:l,and similarly for loop 2. Clearly X, =X —X, =i—;( +L-L,=X-X,+R and
Ri

is the relative displacement of the origins of the loops.
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by differentiating under the integral sign in our well-worn way! Now as long as the two loops
don’t touch, there is no singularity in the denominator to worry about during the differentiation.

Therefore
F =11,V M, (R)
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Clearly
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again, as long as the loops do not touch each other.



