Physics 604
Problem Set 3
Due Oct. 21, 2010

The orthogonal expansion functions with the correct boundary conditions in the x-direction and

1) a)
y-direction are products of the vanishing sines. Therefore the potential must be of the form
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where the terms with m=0 or n=0 are excluded because the sines then vanish. Following the
example in the text, the boundary conditions at z = 0, a yield
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Solving the linear equations yields
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and the final expression for the potential is
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where the summation is only over odd integers m,n.

b) AtX= (a/ 2,al2,al Z)the potential evaluates to
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where the sine factors simply alternate signs in the various terms. Because the sinh terms grow
rapidly with m and n, only the m,n=11,13,31,33,15,51 need to be summed to give a result good
to three significant digits.

SinV27/2 _ 1071618
sinh /272
25sinh+107/2 _ 2x0.00691623 _ 0.0046411
3 sinh+/107 3
1sinh3v27/2 _0.00001483 _ oo
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5 sinh~/267 5

The sum of these terms with the correct signs is 0.1026752 . When multiplied by 32 / 7% the
sum is 0.3329... . By the problem quoted, the sum “should be” 1/3=0.3333....

A few of you realized that there was a very compact answer in terms of cosh’s for both the
potential and the summations. Cute!!!

2) This problem is a straightforward application of the definition of completeness. Assuming
completeness of the expansion basis implies
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for suitably well-behaved (mathematicians define this, the “delta-function” is OK)

functions f (¢) In particular,
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where the division in the expression for the expansion coefficient accounts for the

normalization of the orthogonal set. Therefore
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3) a) Thisis an example of the 2-D polar coordinate expansion set. In general,

®(r,0) =, In r+i[Ar' + B,r"}{c, sin I; +D, cosl%ﬂ



b)

c)

The boundary conditions on the radial planes @ = 0, £ imply only the sin terms appear and

C, may be taken to be 1, and @, = 0. The boundary condition at I = aimplies B, = —A1a2' ,

so the expansion is
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The lowest non-vanishing term has | =1. In this case
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The surface densities are
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The negative sign occurs on both the 8 =0, § surfaces.

At large radii r >>aand for f =7
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The Yy -direction is the normal direction. Also, we can interpret the expansion coefficient A as

the negative of the normal electric field at large radii. The total charge per unit length on the
half-cylinder is
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In the absence of the the half cylinder, the charge per unit length in a width of length 2a would
be



because in this case, the field is uniform and normal to the surface. The charge per unit length
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AFTER subtracting off the constant term due to the uniform field which does NOT vanish as

on the other surfaces is
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I — o0 . This charge precisely balances the extra charge on the half-cylinder. The factor of two
in front is because there are two surfaces with the same charge deficit.

4) This problem is a straightforward application of the standard hemisphere problem. First note
that if V / 2 is subtracted from the problem as stated CD'(I‘, (9) = CD(r, (9) —V /2, the problem

has four hemispheres at potentials £V / 2, the upper hemisphere of the inner sphere and the
lower hemis  phere of the outer sphere are positive and the others are now at =V /2. The
potential may be expanded as
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The boundary conditions at r = a,b, and the work on the hemispheres problem in the text

imply
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Solving for the expansion coefficients yields
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as may be checked by putting I = a,b in the solution. The coefficients of the first four terms

are3/2,7/8,11/16,25/32 . In the limith — oo,
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as it should.



