Physics 604
Problem Set 2
Due Oct. 07, 2010

1) a) Letthe plane be the XY plane and the charge be on the Z -axis. The charge and its image have

potential
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The normal electric field is

00| q d q —d
- a2t

Arey (X +y?+d°) " A7 (x* 4y +d?)
q 2d

4re, (x2 +y? +d2)3/2 .

3/2

The surface density is
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b) The force between the charge and its image is
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c) The total force acting on the plane is
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d) The work to remove the particle to infinity is
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The potential energy between the charge and its image is clearly
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This is not equal to the answer in d) because the conditions are different in the derivation. In d)
the image charge is moving as the work is accumulated. The standard derivation in e) assumes
that succeeding charges are fixed as they are added to the previous charges. The extra energy
needed accounts for the extra factor of two in e).

Numerically
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=3.600 eV.

This problem is a straightforward repeat of the derivation in Section 2.2 of Jackson. Let X' be the
location of the charge |)_("| <a, and therefore |)_("| /a<1. Let X" be the position of the image. By

symmetry the image charge lies on the same radius vector as the charge. An argument
paralleling that in 2.2 shows
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The potential inside the sphere is therefore
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b) The electric field may be determined by either differentiation or by Coulomb’s law. The result is
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The force may be obtained by integrating Coulomb’s law over this surface charge. It is far
easier (and correct!) just to evaluate the force between the particle and its image. The result is
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The force is directed radially outward. Note that in the limit |7('| —> a the force goes to that of an

charge interacting with a grounded plane (result in problem 1), as it should.
If the sphere is held at a potential of V , there is a charge
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residing on the outside surface of the sphere. There is no change of the electric field inside of
the sphere. Finally, clearly the total charge on the inside surface of the sphere is —( (the diligent

among you will check by integrating o !) If the total charge on the sphereis Q, by

superposition the potential on the sphere is
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and the electric field is radial and has E, =(Q—q)/ (47Z'€0|"2 ) outside the sphere. Inside the

sphere the electric field is the same.

3) a) As mentioned in class, use 2 negative image line charges at X = (—XO, yo) and X = (XO,—yO)

and a positive image line charge at X = (—XO, —yo) to get the potential for X,y > Oinside
the corner. The summed potential, using the usual rules of the natural logarithm is
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If either X =0 or y = 0the argument of the natural logarithm is 1, and the potential vanishes.

Computing the electric field in the X -direction
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Because the argument of the natural logarithm is still I. A similar argument works to show that

Ey vanishes on the boundary.
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b) Here assume that the negative charge is on the inside sphere, and uniformly distributed by
symmetry. Gauss’s Law gives
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The potential difference is
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The capacitance is
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c) Assume that the negative charge is on the inside cylinder and uniformly distributed along the
length of the cylinder. Gauss’s Law gives
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The potential difference is
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The capacitance is
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d) One

4) a) The work needed to remove a charge from a grounded sphere is
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This result, however is a little different than the usual one. If one evaluates the electrostatic
potential of the image acting back on the original charge one obtains a t because the potential
itself depends on  the location of the charge as it is moving.edge effects and the corrections due to

the fact the charge is slightly displaced from uniform distribution on the conductor
(corrections of order a/d and b/d), and assume that the fields are simply two line charge fields
superposed.

b) This part follow from the fact that the second term in the force formula is (unbelievably!) a
perfect differential
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It should be noted that a posted solution many people used seems incorrect. The integral is not

done properly! Note that the third term is from the fact that the insulated sphere has a
2

——— which changes as I does. The total electric field goes goes as 1/r3

potential V
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because of this effect.

where Fa,b are the positions of the center of the line charges. To the first significant order in a/d and

b/d,
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5) This problem is a straightforward application of the method of images and the surface integral

form of the solution Eqn. 1.44.

a) The method of images gives the Green function. If X = (X, Y, Z) is the observation point and

X' = (X', Yy, Z') is the source point, then
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automatically gives the Dirichtlet condition on the surface ' =0.
b) Using
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when expressed in terms of cylindrical coordinates.

c) When p =0 the integral follows from elementary integration theory
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d) Expanding by the Binomial TheoremGreen’s Second Identity. Following the same
procedure a
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where @is the radius of the sphere and R = |)? -X'

. The final integral is clearly the average

of the potential over the surface of the sphere. It does not matter what radius is chosen for the
sphere in performing the average, but of course the values of the scalar potential on the surface
will depend on the choice of radius.

The (upper bound) capacitance determined by the trial function is
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where ais the inner radius of the cylinder, where D is the outer radius of the cylinder, and L is

the length of the cylinder. Evaluating the exact and estimated capacitance numerically yields
this table:

b/a Exact Trial Function
[C/27e,L] =(Inb/a)” [C/2re,L] =(b/a+1)/(2b/a-2)
1.5 2.46630 2.5
2 1.44270 1.5
3 0.91024 1.0

The “Exact” field is more like the linear trial function when b — a.. In the limit, clearly the two
expressions agree by the expansion In (l+ X) —> X for small X. Notice the trial values are

indeed higher than the exact values.



