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Courant-Snyder Invariant
Consider now a single particular solution of the equations ofConsider now a single particular solution of the equations of 
motion generated by Hill’s equation. We’ve seen that once a 
particle is on an invariant ellipse for a period, it must stay on that 
ellipse throughout its motion. Because the phase space area of the 
single period invariant ellipse is preserved by the motion, the 
quantity that gives the phase space area of the invariant ellipse in 

( )( ) βββ /'''2 2222

q y g p p p
terms of the single particle orbit must also be an invariant. This 
phase space area/π,

( )( ) βαββαγε /'''2 2222 xxxxxxx ++=++=

is called the Courant-Snyder invariant. It may be verified to be 
a constant by showing its derivative with respect to s is zero by 
Hill’s equation, or by explicit substitution of the transfer matrix 
solution which begins at some initial value s = 0.
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Pseudoharmonic Solution
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Using the x(s) equation above and the definition of ε theUsing the x(s) equation above and the definition of ε, the 
solution may be written in the standard “pseudoharmonic” form
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The the origin of the terminology “phase advance” is now obvious.
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Case II: K(s) not periodic
In a linac or a recirculating linac there is no closed orbit or natural 
machine periodicity. Designing the transverse optics consists of 
arranging a focusing lattice that assures the beam particles comingarranging a focusing lattice that assures the beam particles coming 
into the front end of the accelerator are accelerated (and sometimes 
decelerated!) with as small beam loss as is possible. Therefore, it is 
i ti t k th i iti l b h i j t d i t thimperative to know the initial beam phase space injected into the 
accelerator, in addition to the transfer matrices of all the elements 
making up the focusing lattice of the machine. An initial ellipse, or 
a set of initial conditions that somehow bound the phase space of 
the injected beam, are tracked through the acceleration system 
element by element to determine the transmission of the beamelement by element to determine the transmission of the beam 
through the accelerator. The designs are usually made up of well-
understood “modules” that yield known and understood transverse 
beam optical properties

Physics 417/517 Introduction to Particle Accelerator Physics  10/22/2009

beam optical properties.



Definition of β function
Now the pseudoharmonic solution applies even when K(s) is 
not periodic. Suppose there is an ellipse, the design injected 
ellipse, which tightly includes the phase space of the beam atellipse, which tightly includes the phase space of the beam at 
injection to the accelerator. Let the ellipse parameters for this 
ellipse be α0, β0, and γ0. A function β(s) is simply defined by the 
lli t f ti l
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One might think to evaluate the phase advance by integrating 
the beta-function. Generally, it is far easier to evaluate the phase 
d i th l f ladvance using the general formula,
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where β(s) and α(s) are the ellipse functions at the entrance of 
the region described by transport matrix Ms',s. Applied to the 
situation at hand yields

( )( )
( ) ( )sMsM

sM
s

120110

12
0,tan

αβ
µ

−
=∆

Physics 417/517 Introduction to Particle Accelerator Physics  10/22/2009



Beam Matching
Fundamentally, in circular accelerators beam matching is 
applied in order to guarantee that the beam envelope of the real 
accelerator beam does not depend on time. This requirement isaccelerator beam does not depend on time. This requirement is 
one part of the definition of having a stable beam. With periodic 
boundary conditions, this means making beam density contours 
i h li ith th i i t lli (i ti l tin phase space align with the invariant ellipses (in particular at 
the injection location!) given by the ellipse functions. Once the 
particles are on the invariant ellipses they stay there (in the 
linear approximation!), and the density is preserved because the 
single particle motion is around the invariant ellipses. In linacs 
and recirculating linacs, usually different purposes are to beand recirculating linacs, usually different purposes are to be 
achieved. If there are regions with periodic focusing lattices 
within the linacs, matching as above ensures that the beam
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envelope does not grow going down the lattice. Sometimes it is 
advantageous to have specific values of the ellipse functions at 
specific longitudinal locations Other times re/matching is done tospecific longitudinal locations. Other times, re/matching is done to 
preserve the beam envelopes of a good beam solution as changes 
in the lattice are made to achieve other purposes, e.g. changing the 
dispersion function or changing the chromaticity of regions where 
there are bends (see the next chapter for definitions). At a 
minimum, there is usually a matching done in the first parts of the , y g p
injector, to take the phase space that is generated by the particle 
source, and change this phase space in a way towards agreement 
with the nominal transverse focusing design of the rest of thewith the nominal transverse focusing design of the rest of the 
accelerator. The ellipse transformation formulas, solved by 
computer, are essential for performing this process.
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Dispersion Calculation
Begin with the inhomogeneous Hill’s equation for the 
dispersion.

( )
2 1d D K D

Write the general solution to the inhomogeneous equation for 
h di i b f

( ) ( )2

1d D K s D
ds sρ

+ =

the dispersion as before.
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Here Dp can be any particular solution. Suppose that the 
dispersion and it’s derivative are known at the location s1, and 

e ish to determine their al es at and beca se thewe wish to determine their values at s2. x1 and x2, because they 
are solutions to the homogeneous equations, must be 
transported by the transfer matrix solution Ms2,s1 already found.
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To build up the general solution, choose that particular solution 
of the inhomogeneous equation with boundary conditions
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Evaluate A and B by the requirement that the dispersion and it’s 
derivative have the proper value at s1 (x1 and x2 need to be
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derivative have the proper value at s1 (x1 and x2 need to be 
linearly independent!)
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3 by 3 Matrices for Dispersion Tracking
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P ti l l ti t i h ti f t t KParticular solutions to inhomogeneous equation for constant K
and constant ρ and vanishing dispersion and derivative at s = 0
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