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Courant-Snyder Invariant »

Consider now a single particular solution of the equations of ODU
motion generated by Hill’s equation. We’ve seen that once a

particle is on an invariant ellipse for a period, it must stay on that
ellipse throughout its motion. Because the phase space area of the
single period invariant ellipse is preserved by the motion, the
quantity that gives the phase space area of the invariant ellipse in
terms of the single particle orbit must also be an invariant. This
phase space area/r,

£ =’ + 2000+ ' = (x2 +(Br'+ax ) )/ B

Is called the Courant-Snyder invariant. It may be verified to be

a constant by showing its derivative with respect to s IS zero by
Hill’s equation, or by explicit substitution of the transfer matrix
solution which begins at some initial value s = 0.
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Pseudoharmonic Solution
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Using the x(s) equation above and the definition of ¢, the
solution may be written in the standard “pseudoharmonic” form

x(s)=+/eB(s)cos(Aw, ,—5) where & =tan1('8 0x'°+a°x°)

The the origin of the terminology “phase advance” is now obvious.
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Case Il K(s) not periodic Mlidg
In a linac or a recirculating linac there is no closed orbit or naturaP
machine periodicity. Designing the transverse optics consists of
arranging a focusing lattice that assures the beam particles coming
Into the front end of the accelerator are accelerated (and sometimes
decelerated!) with as small beam loss as Is possible. Therefore, it Is
Imperative to know the initial beam phase space injected into the
accelerator, in addition to the transfer matrices of all the elements
making up the focusing lattice of the machine. An initial ellipse, or
a set of initial conditions that somehow bound the phase space of
the injected beam, are tracked through the acceleration system
element by element to determine the transmission of the beam
through the accelerator. The designs are usually made up of well-
understood “modules” that yield known and understood transverse
beam optical properties.
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Definition of # function um
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Now the pseudoharmonic solution applies even when K(s) Is
not periodic. Suppose there is an ellipse, the design injected
ellipse, which tightly includes the phase space of the beam at
Injection to the accelerator. Let the ellipse parameters for this
ellipse be a,, 5,, and y,. A function g(s) is simply defined by the
ellipse transformation rule

,B(S):(M ()) 2M12(S) 11( )0‘0 ( ()) o
=0y ()P + (ByM, (5) - ]/ﬁo

where
et
M =

) ED
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One might think to evaluate the phase advance by integrating
the beta-function. Generally, it is far easier to evaluate the phase
advance using the general formula,

(M s',s )12
ﬁ(S )(Ms',s )11 - CZ(S )(MS',S )12
where fA(s) and a(s) are the ellipse functions at the entrance of

the region described by transport matrix M, . Applied to the
situation at hand yields

tanAu,. =

M, (S)
IBOMll(S)_aOMﬂ (S)

tanAu, , =
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Fundamentally, in circular accelerators beam matching is
applied in order to guarantee that the beam envelope of the real
accelerator beam does not depend on time. This requirement is
one part of the definition of having a stable beam. With periodic
boundary conditions, this means making beam density contours
In phase space align with the invariant ellipses (in particular at
the injection location!) given by the ellipse functions. Once the
particles are on the invariant ellipses they stay there (in the
linear approximation!), and the density is preserved because the
single particle motion is around the invariant ellipses. In linacs
and recirculating linacs, usually different purposes are to be
achieved. If there are regions with periodic focusing lattices
within the linacs, matching as above ensures that the beam

Beam Matching
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envelope does not grow going down the lattice. Sometimes it Is
advantageous to have specific values of the ellipse functions at
specific longitudinal locations. Other times, re/matching is done to
preserve the beam envelopes of a good beam solution as changes
In the lattice are made to achieve other purposes, e.g. changing the
dispersion function or changing the chromaticity of regions where
there are bends (see the next chapter for definitions). At a
minimum, there is usually a matching done in the first parts of the
Injector, to take the phase space that Is generated by the particle
source, and change this phase space in a way towards agreement
with the nominal transverse focusing design of the rest of the
accelerator. The ellipse transformation formulas, solved by
computer, are essential for performing this process.
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Dispersion Calculation
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Begin with the inhomogeneous Hill’s equation for the
dispersion.
d’D 1
e +K (s)D = 05)

Write the general solution to the inhomogeneous equation for
the dispersion as before.

D(S):Dp (S)+ Ax, (S)+ Bx, (s)

Here D, can be any particular solution. Suppose that the
dispersion and it’s derivative are known at the location s,, and
we wish to determine their values at s,. x; and x,, because they
are solutions to the homogeneous equations, must be
transported by the transfer matrix solution M, ., already found.
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To build up the general solution, choose that particular solution
of the inhomogeneous equation with boundary conditions

D,o(s1)=D;0(s1)=0

Evaluate 4 and B by the requirement that the dispersion and it’s
derivative have the proper value at s, (x; and x, need to be
linearly independent!)

eI
D(s,)=D,q(s,—5)+(M,, )11 D(s,)+(M,,, )12 D'(s,)

D'(s,)=Dlo(s,—s,)+ (M, , )21 D(s,)+(M,,, )22 D'(s,)
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3 by 3 Matrices for Dispersion Tracking s
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D (S2 ) (MSZ 51 )11 (MSszl )12 DP 0 (S2 B Sl)
D,(SZ) =M, ” (Msz,sl)zz D;)O(SZ_Sl)
1 0 0 1

Wi”

Particular solutions to inhomogeneous equation for constant K

and constant p and vanishing dispersion and derivative at s = 0

K<0 K=0 K>0
1 52
Dp,O(S) W(cosh(\/Es)—l) Z Kip(l—cos(\/fs))
4 1 . S 1 .
Dp,O(S) \/m,o 5|nh(Ms) ; \/Ep sm(\/fs)
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