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Evolution equations for the «, «6»
functions ODU

The ellipse transformation formulas give, to order linear in ds
ds
,B(s+ds)——2a—+,6( )
rad
ds

s +ds)= —7/(5)@ +a(s)+ S(s)Kds rad

So

dp (5)= 20(s)

ds rad

4% () B(s)K rad —2)

ds rad
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Note that these two formulas are independent of the scale of t
starting ellipse ¢, and in theory may be integrated directly for
f(s) and a(s) given the focusing function K(s). A somewhat
easier approach to obtain f(s) is to recall that the maximum
extent of an ellipse, x,..,, IS (¢8)2(s), and to solve the differential
eguation describing its evolution. The above equations may be
combined to give the following non-linear equation for x, .. (s) =

W(s) = EA)s) o
d ZV-I-K(S)W: (g r? ) .
ds w
Such a differential equation describing the evolution of the
maximum extent of an ellipse being transformed is known as an
envelope equation.
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It should be noted, for consistency, that the same f(s) = wz(s)Q DU
IS obtained If one starts integrating the ellipse evolution

equation from a different, but similar, starting ellipse. That this

IS SO IS an exercise.

The envelope equation may be solved with the correct
boundary conditions, to obtain the g-function. a may then be
obtained from the derivative of f, and y by the usual
normalization formula. Types of boundary conditions: Class |—
periodic boundary conditions suitable for circular machines or
periodic focusing lattices, Class I1—initial condition boundary
conditions suitable for linacs or recirculating machines.
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Solution to Hill’s Equation in W’
Amplitude-Phase form ODU

To get a more general expression for the phase advance, consider
In more detail the single particle solutions to Hill’s equation

d*x

—+K (s)x=0

ds
From the theory of linear ODEs, the general solution of Hill’s

equation can be written as the sum of the two linearly independent
pseudo-harmonic functions

x(s) = Ax, (S)-I— Bx_ (S)

where

x, (s)= w(s et
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are two particular solutions to Hill’s equation, provided that
d*w c’ du C
+ Ki(shw=— and ——\s)= , Eqgns. (3)
ds’ ) W’ ds ) w?(s)

and where 4, B, and c are constants (in s)

That specific solution with boundary conditions x(s,) = x; and
dx/ds (s,) = x'; has
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Therefore, the unimodular transfer matrix taking the solution at
s = s, to Its coordinates at s = s, IS

W(S 2 ) W(S 2 )WI (Sl ) W(S 2 )W(S 1 )

—2lcosAu, . — SinAu, sinAu,
W(Sl) o c e c o
(xz ] |- ¢ {14_ W(Sz )Wl (Sz )ZW(Sl)W' (Sl)}sin Au, Exl j
x', W(Sz W(Sl) ¢ W(Sl) oS All’lsz,sl n W (Sz )W(Sl)sin A,Usz,sl X'y
_[w'(sl)_ w (SZ):|COSA W(Sz) c
H, s
W(Sz) W(Sl)
where
o c
ILlsz,Sl _ﬂ(SZ)_H(Sl):j 2 dS
L W)
1
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Such boundary conditions, which may be used to describe
circular or ring-like accelerators, or periodic focusing lattices,
have K(s + L) = K(s). L 1s either the machine circumference or
period length of the focusing lattice.

Case |. K(s) periodic in s

It is natural to assume that there exists a unique periodic
solution w(s) to Egn. (3a) when K(s) is periodic. Here, we will
assume this to be the case. Later, it will be shown how to
construct the function explicitly. Clearly for w periodic

s+L

Bls)=puls)—p,s  with g, = | WZL(S)CZS

S

IS also periodic by Eqgn. (3b), and x;, Is independent of s.
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The transfer matrix for a single period reduces to

COS i, — W(S)CWI(S)Sin U, WZC(S)sm U,
R AR L SE

:((1) Cl)]c05(m)+(a _ﬂajsin(m)

where the (now periodic!) matrix functions are

s :_W(S)w'(s) O wz(s) S _1+a2(s)
() ) :B() o 7/() ,B(S)

By Thm. (2), these are the ellipse parameters of the periodically
repeating, i1.e., matched ellipses.
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In terms of the p-function, the phase advance for the period is

General formula for phase advance

and more generally the phase advance between any two
longitudinal locations s and s' IS

* ds
AVIRS :'!.,B(S)
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Transfer Matrix in terms of a and g N

Also, the unimodular transfer matrix taking the solution fromQDU
tos'Is
/'g ((i)) (cos A, +a(s)sinAu,.,) JB(s')B(s)sin A, ‘
M. = .
1 [@Qralsals))sindn,, } B(5) |
_ ’ L (cosAu.  —als')sin Au.
T o1 oo | |y eosbs el

Note that this final transfer matrix and the final expression for
the phase advance do not depend on the constant ¢. This
conclusion might have been anticipated because different
particular solutions to Hill’s equation exist for all values of ¢, but
from the theory of linear ordinary differential equations, the final
motion Is unique once x and dx/ds are specified somewhere.
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Method to compute the g-function hlidg
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Our previous work has indicated a method to compute the -
function (and thus w) directly, i.e., without solving the differential
equation Eqn. (3). At a given location s, determine the one-period
transfer map M_,; . (s). From this find x; (which is independent
of the location chosen!) from cos u, = (M,,+M,,) / 2, and by
choosing the sign of u, so that p(s) = My,(s) / sin u, 1s positive.
Likewise, a(s) = (M-M,,) [ 2 sin ;. Repeat this exercise at
every location the S-function is desired.

By construction, the beta-function and the alpha-function, and

hence w, are periodic because the single-period transfer map is
periodic. It is straightforward to show w=(cp(s))V? satisfies the
envelope equation.
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Courant-Snyder Invariant »

Consider now a single particular solution of the equations of ODU
motion generated by Hill’s equation. We’ve seen that once a

particle is on an invariant ellipse for a period, it must stay on that
ellipse throughout its motion. Because the phase space area of the
single period invariant ellipse is preserved by the motion, the
quantity that gives the phase space area of the invariant ellipse in
terms of the single particle orbit must also be an invariant. This
phase space area/r,

£ =’ + 2000+ ' = (x2 +(Br'+ax ) )/ B

Is called the Courant-Snyder invariant. It may be verified to be

a constant by showing its derivative with respect to s IS zero by
Hill’s equation, or by explicit substitution of the transfer matrix
solution which begins at some initial value s = 0.
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Pseudoharmonic Solution
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[czc(b(w))j _ IB:B(OS)(COS(Aﬂso("')ao)Sin AIUS,O) msin Aty o [d);o \
) e PN Po_(cos —a(s)sin ds
- Bls)p, L (a(S)—ao)cosAﬂSJ ,B(s)( Aty = als) Aﬂs,o) dslo )

(xz(s)+(,B(S)x'(s)+a(s)x(s))2 )/ /B(S): (xé +(,30x'0+0£0x0 )2 )/ Po=e

Using the x(s) equation above and the definition of ¢, the
solution may be written in the standard “pseudoharmonic” form

x(s)=+/eB(s)cos(Aw, ,—5) where & =tan1('8 0x'°+a°x°)

The the origin of the terminology “phase advance” is now obvious.
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