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Phase Advance of a Unimodular Matrix S
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Any two-by-two unimodular (Det (/) = 1) matrix with
|Tr M| < 2 can be written in the form

e[l Y[, s

The phase advance of the matrix, u, gives the eigenvalues of the
matrix 1 = ¢**, and cos u = (Tr M)/2. Furthermore fy—a?=1

Pf: The equation for the eigenvalues of M is

=M, +M,,)A+1=0
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Because M is real, both 4 and A* are solutions of the
quadratic. Because

z:Tgwuhﬁ4w@nuy

For |Tr M| <2, A2* =1and so 4, , = e**. Consequently cos u
= (Tr M)/2. Now the following matrix is trace-free.

M, —M
(1 Oj 112 22 j\412 1
M — cos(u)=
0 1)
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Simply choose
a:Mll_MZZ ﬂ:M12 7/:_M21
2sinu sin SN 1

and the sign of x to properly match the individual matrix
elements with £ > 0. It is easily verified that Sy — a? = 1. Now

1 0

M? = \COS(Z,u)+ “ 'B\sin(Zy)
0 1) -y —a)

and more generally

N O
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Therefore, because sin and cos are both bounded functions,
the matrix elements of any power of M remain bounded as
long as [Tr (M)| < 2.

NB, in some beam dynamics literature it is (incorrectly!)
stated that the less stringent |Tr (A)| < 2 ensures boundedness
and/or stability. That equality cannot be allowed can be
Immediately demonstrated by counterexample. The upper
triangular or lower triangular subgroups of the two-by-two
unimodular matrices, i.e., matrices of the form

1 x) 1 0)
ooy

clearly have unbounded powers if |x| Is not equal to O.
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Significance of matrix parameters

Another way to interpret the parameters «, f, and y, which
represent the unimodular matrix M (these parameters are
sometimes called the Twiss parameters or Twiss representation
for the matrix) is as the “coordinates” of that specific set of
ellipses that are mapped onto each other, or are invariant, under
the linear action of the matrix. This result is demonstrated in

Thm: For the unimodular linear transformation

Mz((l) g)cos(y)+[_0; _’ngsin(y)

with |Tr (M)| < 2, the ellipses
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are invariant under the linear action of M, where c Is any
constant. Furthermore, these are the only invariant ellipses. Note
that the theorem does not apply to +/, because |Tr (£])| = 2.

Pf. The inverse to M is clearly

e N O e

By the ellipse transformation formulas, for example
B'= ,Bz(sin2 ,u);/ +2(— Bsin u)(cos g+ asin p ) +(cos  + arsin u ) B
= Bsin? ull+a?)-2Ba’sin® y+ Bcos® u+ fa’sin u
= (sinzy + COSZy),B =
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Similar calculations demonstrate that o' = o and y' = y. As det (M) =
1, ¢' = ¢, and therefore the ellipse is invariant. Conversely, suppose

that an ellipse is invariant. By the ellipse transformation formula,
the specific ellipse

7/z'x2 + Zaixy+/8iy2 =&
IS Invariant under the transformation by M only if

Y, ) (cos t—asin u ) 2(cos p—arsin )y sin u) (7sin u ) \ 7. )
o, =|—(cosu—asin u)Bsin u) 1-28ysin? u (cos u+asin u)ysinu) | a,
,BJ (Bsin u) —2(cos g +asin u)Ssin ) (cos p+asin iy ,BJ
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i.e., if the vector v is ANY eigenvector of T,, with eigenvalue 1.
All possible solutions may be obtained by investigating the
eigenvalues and eigenvectors of 7,,. Now

T, v, =Av, hasasolution when Det (T, —AI)=0
Le.,

(4% +[2—4cos” u |2 +1)(1-4)=0
Therefore, M generates a transformation matrix 7,, with at least

one eigenvalue equal to 1. For there to be more than one solution
with 1 =1,

1+[2—4C052,u]+1=0, cos’u=1 or M==I
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and we note that a// ellipses are invariant when M = /. But, these
two cases are excluded by hypothesis. Therefore, M generates a
transformation matrix 7,, which always possesses a single
nondegenerate eigenvalue 1; the set of eigenvectors corresponding
to the eigenvalue 1, all proportional to each other, are the only
vectors whose components (y;, a;, £,) yield equations for the
Invariant ellipses. For concreteness, compute that eigenvector with
eigenvalue 1 normalized so Sy, —a? =1

(}/z’\ ( -My I M, \ (7)
v, =la, =p (Mll_MZZ)/2M12 =| &
\,B,-] \ 1 ) \,B)

All other eigenvectors with eigenvalue 1 have v, = gv, . / ¢, for
some value c.
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Because Det (M) =1, the eigenvector v, ; clearly yields the
Invariant ellipse

w’ +2oxy+ B =¢.
Likewise, the proportional eigenvector v, generates the similar
ellipse

i(yocz +2axy+,8y2)=g
c

Because we have enumerated all possible eigenvectors with
eigenvalue 1, all ellipses invariant under the action of A, are of the

form

QOCZ—I—ZOOC)/—I—,B)/Z =c
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To summarize, this theorem gives a way to tie the mathematica
representation of a unimodular matrix in terms of its a, £, and y,
and its phase advance, to the equations of the ellipses invariant
under the matrix transformation. The equations of the invariant
ellipses when properly normalized have precisely the same «, p,
and y as in the Twiss representation of the matrix, but varying c.

Finally note that throughout this calculation ¢ acts merely as a
scale parameter for the ellipse. All ellipses similar to the starting
ellipse, 1.e., ellipses whose equations have the same a, £, and ,
but with different ¢, are also invariant under the action of M.
Later, it will be shown that more generally

I ' I 2
£ ="+ 200x'+ ' = (x2 +(,Bx+ax) )/,6’
IS an invariant of the equations of transverse motion.
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Applications to transverse beam optics saey
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When the motion of particles in transverse phase space iIs considered,
linear optics provides a good first approximation of the transverse
particle motion. Beams of particles are represented by ellipses in
phase space (i.e. In the (x, x") space). To the extent that the transverse
forces are linear in the deviation of the particles from some pre-
defined central orbit, the motion may analyzed by applying ellipse
transformation techniques.

Transverse Optics Conventions: positions are measured in terms of
length and angles are measured by radian measure. The area in phase
space divided by =z, &, measured in m-rad, is called the emittance. In
such applications, a has no units, £ has units m/radian. Codes that
calculate £, by widely accepted convention, drop the per radian when
reporting results, it is implicit that the units for x'are radians.
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Within a linear optics description of transverse particle motion;
the particle transverse coordinates at a location s along the beam
line are described by a vector

(s) )

dx

——(s)

ds ')

If the differential equation giving the evolution of x is linear, one
may define a linear transport matrix M. ; relating the coordinates
at s' to those at s by

c;;(S')\:M OE;(S)\
&) &)
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From the definitions, the concatenation rule M. .= M. .M, m@DU
apply for all s' such that s < s'< s" where the multiplication is the
usual matrix multiplication.

Pf. The equations of motion, linear in x and dx/ds, generate a
motion with

x(s) x(s") x(s') x(s)

MS",S @ = @ o) | T Ms",s' @ N | T MS",S'MS',S @
o) =) () ~-(s)
for all initial conditions (x(s), dx/ds(s)), thus M. .= M. .M, .

Clearly M, = I. As Is shown next, the matrix M,  Is in general a
member of the unimodular subgroup of the general linear group.
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Ellipse Transformations Generated leyypp
Hill’s Equation ODU

The equation governing the linear transverse dynamics in a
particle accelerator, without acceleration, is Hill s equation*

2
% + K(S)x =0 Eqn. (2)
S

The transformation matrix taking a solution through an
Infinitesimal distance ds Is

x(s+ds)) ( ds \( x(s) [ x(s)
@(HdSQ =l 3 @) @(S)\ =M @(S)w
ds ) \=K(s)dsrad 1 \gs°/) \ds ")

* Strictly speaking, Hill studied Eqgn. (2) with periodic K. It was first applied to circular accelerators which had a
periodicity given by the circumference of the machine. It is a now standard in the field of beam optics, to still
refer to Egn. 2 as Hill’s equation, even in cases, as in linear accelerators, where there is no periodicity.
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Suppose we are given the phase space ellipse ODU

y(s)x® + 2a(s)xx'+ B(s )x'* = &
at location s, and we wish to calculate the ellipse parameters, after
the motion generated by Hill’s equation, at the location s + ds

(s +ds)x® + 2a(s + ds )xx'+ B(s + ds x> = &

Because, to order linear in ds, Det M, , .= 1, at all locations s, &' =
¢, and thus the phase space area of the ellipse after an infinitesimal
displacement must equal the phase space area before the
displacement. Because the transformation through a finite interval
In s can be written as a series of infinitesimal displacement
transformations, all of which preserve the phase space area of the
transformed ellipse, we come to two important conclusions:
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1. The phase space area Is preserved after a finite integrationQDU
Hill’s equation to obtain M, , the transport matrix which can
be used to take an ellipse at s to an ellipse at s'. This
conclusion holds generally for all s' and s.

2. Therefore Det M. =1 for all s and s, independent of the
details of the functional form K(s). (If desired, these two
conclusions may be verified more analytically by showing
that

(pr-at)=0 - plsh(s)-a*(s)=1 Vs

may be derived directly from Hill’s equation.)
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Evolution equations for the «, «6»
functions ODU

The ellipse transformation formulas give, to order linear in ds
ds
,B(s+ds)——2a—+,6( )
rad
ds

s +ds)= —7/(5)@ +a(s)+ S(s)Kds rad

So

dp (5)= 20(s)

ds rad

4% () B(s)K rad —2)

ds rad
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