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Solution to Hill’s Equation in
Amplitude-Phase Form

To get a more general expression for the phase advance, consider
in more detail the single particle solutions to Hill’s equation
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From the theory of linear ODEs, the general solution of Hill’s 
equation can be written as the sum of the two linearly independent 
pseudo-harmonic functions
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are two particular solutions to Hill’s equation, provided that
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Eqns. (3)

and where A, B, and c are constants (in s)

That specific solution with boundary conditions x(s1) = x1 and 
dx/ds (s1) = x'1 has
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Therefore, the unimodular transfer matrix taking the solution at 
s = s1 to its coordinates at s = s2 is
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Case I: K(s) periodic in s
Such boundary conditions, which may be used to describe 
circular or ring-like accelerators, or periodic focusing lattices, 
have K(s + L) = K(s). L is either the machine circumference or 
period length of the focusing lattice.

It is natural to assume that there exists a unique periodic 
solution w(s) to Eqn. (3a) when K(s) is periodic. Here, we will 
assume this to be the case. Later, it will be shown how to 
construct the function explicitly. Clearly for w periodic

( ) ( ) ( )ds
sw

csss
Ls

s
LL ∫

+

=−= 2            with µµµφ

is also periodic by Eqn. (3b), and µL is independent of s.
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The transfer matrix for a single period reduces to
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where the (now periodic!) matrix functions are
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By Thm. (2), these are the ellipse parameters of the periodically 
repeating, i.e., matched ellipses.
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General formula for phase advance
In terms of the β-function, the phase advance for the period is
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and more generally the phase advance between any two 
longitudinal locations s and s' is
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Transfer Matrix in terms of α and β
Also, the unimodular transfer matrix taking the solution from s 
to s' is
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Note that this final transfer matrix and the final expression for 
the phase advance do not depend on the constant c. This 
conclusion might have been anticipated because different 
particular solutions to Hill’s equation exist for all values of c, but 
from the theory of linear ordinary differential equations, the final 
motion is unique once x and dx/ds are specified somewhere.
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Method to compute the β-function
Our previous work has indicated a method to compute the β-
function (and thus w) directly, i.e., without solving the 
differential equation Eqn. (3). At a given location s, determine the 
one-period transfer map Ms+L,s (s).  From this find µL (which is 
independent of the location chosen!) from cos µL = (M11+M22) / 2, 
and by choosing the sign of µL so that β(s) = M12(s) / sin µL is 
positive. Likewise, α(s) = (M11-M22) / 2 sin µL. Repeat this 
exercise at every location the β-function is desired.

By construction, the beta-function and the alpha-function, and 
hence w, are periodic because the single-period transfer map is 
periodic. It is straightforward to show w=(cβ(s))1/2 satisfies the 
envelope equation.
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Courant-Snyder Invariant

( )( ) βαββαγε /'''2 2222 xxxxxxx ++=++=

Consider now a single particular solution of the equations of 
motion generated by Hill’s equation. We’ve seen that once a 
particle is on an invariant ellipse for a period, it must stay on that 
ellipse throughout its motion. Because the phase space area of the 
single period invariant ellipse is preserved by the motion, the 
quantity that gives the phase space area of the invariant ellipse in 
terms of the single particle orbit must also be an invariant. This 
phase space area/π,

is called the Courant-Snyder invariant. It may be verified to be 
a constant by showing its derivative with respect to s is zero by 
Hill’s equation, or by explicit substitution of the transfer matrix 
solution which begins at some initial value s = 0.
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Pseudoharmonic Solution
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Using the x(s) equation above and the definition of ε, the 
solution may be written in the standard “pseudoharmonic” form
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The the origin of the terminology “phase advance” is now obvious.
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Dispersion Calculation
Begin with the inhomogeneous Hill’s equation for the 
dispersion.

Write the general solution to the inhomogeneous equation for 
the dispersion as before.
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Here Dp can be any particular solution. Suppose that the 
dispersion and it’s derivative are known at the location s1, and 
we wish to determine their values at s2. x1 and x2, because they 
are solutions to the homogeneous equations, must be 
transported by the transfer matrix solution Ms2,s1 already found.
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To build up the general solution, choose that particular solution 
of the inhomogeneous equation with boundary conditions
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Evaluate A and B by the requirement that the dispersion and it’s 
derivative have the proper value at s1 (x1 and x2 need to be 
linearly independent!)
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3 by 3 Matrices for Dispersion Tracking
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Particular solutions to inhomogeneous equation for constant K
and constant ρ and vanishing dispersion and derivative at s = 0
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