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Phase Advance of a Unimodular Matrix
Any two-by-two unimodular (Det (M) = 1) matrix with 
|Tr M| < 2 can be written in the form
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The phase advance of the matrix, µ, gives the eigenvalues of the 
matrix λ = e±iµ, and cos µ = (Tr M)/2. Furthermore βγ–α2=1

Pf: The equation for the eigenvalues of M is
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Because M is real, both λ and λ* are solutions of the 
quadratic. Because

( ) ( )( )22/Tr1
2

Tr MiM
−±=λ

For |Tr M| < 2, λ λ* =1 and so λ1,2 = e±iµ. Consequently cos µ
= (Tr M)/2. Now the following matrix is trace-free.
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Simply choose
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and the sign of µ to properly match the individual matrix 
elements with β > 0. It is easily verified that βγ – α2 = 1. Now
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and more generally
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Therefore, because sin and cos are both bounded functions, 
the matrix elements of any power of M remain bounded as 
long as |Tr (M)| < 2.

NB, in some beam dynamics literature it is (incorrectly!) 
stated that the less stringent |Tr (M)|    2 ensures boundedness
and/or stability. That equality cannot be allowed can be 
immediately demonstrated by counterexample. The upper 
triangular or lower triangular subgroups of the two-by-two 
unimodular matrices, i.e., matrices of the form

clearly have unbounded powers if |x| is not equal to 0.
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Significance of matrix parameters
Another way to interpret the parameters α, β, and γ, which 
represent the unimodular matrix M (these parameters are 
sometimes called the Twiss parameters or Twiss representation 
for the matrix) is as the “coordinates” of that specific set of 
ellipses that are mapped onto each other, or are invariant, under 
the linear action of the matrix. This result is demonstrated in

Thm: For the unimodular linear transformation
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with |Tr (M)| < 2, the ellipses
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cyxyx =++ 22 2 βαγ
are invariant under the linear action of M, where c is any 
constant. Furthermore, these are the only invariant ellipses. Note 
that the theorem does not apply to ±I, because |Tr (±I)| =  2.

Pf: The inverse to M is clearly
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By the ellipse transformation formulas, for example
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Similar calculations demonstrate that α' = α and γ' = γ. As det (M) = 
1, c' = c, and therefore the ellipse is invariant. Conversely, suppose 
that an ellipse is invariant. By the ellipse transformation formula, 
the specific ellipse 

is invariant under the transformation by M only if
εβαγ =++ 22 2 yxyx iii
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i.e., if the vector     is ANY eigenvector of TM with eigenvalue 1.
All possible solutions may be obtained by investigating the 
eigenvalues and eigenvectors of TM. Now
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i.e.,

Therefore, M generates a transformation matrix TM with at least 
one eigenvalue equal to 1. For there to be more than one solution 
with λ = 1,

2 21 2 4cos 1 0,    cos 1,    or  M Iµ µ⎡ ⎤+ − + = = = ±⎣ ⎦
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cvv i /,11 ε=

and we note that all ellipses are invariant when M = ±I. But, these 
two cases are excluded by hypothesis. Therefore, M generates a 
transformation matrix TM which always possesses a single 
nondegenerate eigenvalue 1; the set of eigenvectors corresponding 
to the eigenvalue 1, all proportional to each other, are the only 
vectors whose components (γi, αi, βi) yield equations for the 
invariant ellipses. For concreteness, compute that eigenvector with 
eigenvalue 1 normalized so βiγi – αi

2 = 1
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All other eigenvectors with eigenvalue 1 have                     , for 
some value c.
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Because Det (M) =1, the eigenvector clearly yields the 
invariant ellipse

.2 22 εβαγ =++ yxyx
Likewise, the proportional eigenvector      generates the similar 
ellipse
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Because we have enumerated all possible eigenvectors with 
eigenvalue 1, all ellipses invariant under the action of M, are of the 
form
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To summarize, this theorem gives a way to tie the mathematical 
representation of a unimodular matrix in terms of its α, β, and γ, 
and its phase advance, to the equations of the ellipses invariant 
under the matrix transformation. The equations of the invariant 
ellipses when properly normalized have precisely the same α, β, 
and γ as in the Twiss representation of the matrix, but varying c.

Finally note that throughout this calculation c acts merely as a 
scale parameter for the ellipse. All ellipses similar to the starting 
ellipse, i.e., ellipses whose equations have the same α, β, and γ, 
but with different c, are also invariant under the action of M. 
Later, it will be shown that more generally

is an invariant of the equations of transverse motion.
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