Physics 417/517
Homework 5 Solution

1. There are many ways to get this answer. Many students just applied Eq. 2.29 of
Wille. To get the result from information in the notes, recall that the total energy
radiated per turn per electron is
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If the revolution time is T, (this quantity will disappear from the final formulal),

the power per electron is
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But the number of electrons in the ring, in terms of the current, is| = N_e/T,. So
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2. From the discussion of undulators, every electron emits
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of energy in photons every turn by each undulator. Following an argument
entirely as in problem 1
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So 50 undulators, which yield about 55.7 kW, are an additional 10% load
compared to the bends. So in problem 3, it should be legitimate to neglect
undulator contributions compared to the bend contributions to the radiation
damping time. A technical point, because K ~1, there is additional radiation in
the harmonics that will raise the total undulator power somewhat.

j?OO MW = 1.114 kW.

3. The fundamental damping time obtained from the bend contributions is
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With the natural partition, because 9 <1,
7.~ 9.45msec, 7, ~ 9.45 msec, andt,, ~ 4.725 msec.

These results agree very well with the values in the report.
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4. This may have been “the worst” problem of the semester, as it required the largest
leap beyond what was presented in class. The following argument is taken from
Sands, Physics of Electron Storage Rings, the justifiably famous SLAC-121
report referenced in Wille. Hisham found the report and the link was distributed
on the 29th. My argument will follow Sands, but use the notation we used during
the semester. Start with the amplitude growth formula from class
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where Ae is the energy of the emitted photons. Note there are contributions only
for those times when the particles are in the bends emitting. The integral we
evaluate in the now-standard way

J- Ae? dn (de)= J3 e

s d(Ae) 8%, p ha)

3 ey na?Sir 3 elnc’y’ 55z
87°¢, p 3 271 3%, p° 9
Note the p~° dependence, and the strong energy dependence of this result.
Because ds ~ cdt, for one turn the total change in the amplitude is
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The excitation rate averaged over the full circumference of the ring is therefore
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where the ring average is defined by
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As in the lectures, the amplitude damping is (make sure you understand the 2)
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As is usual for bound oscillations in equilibrium, the amplitude is shared equally
between the coordinate and the conjugate variable. Therefore o7 = <A2>/ 2.
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. The first task to do is the integrals in the hint:
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Next evaluate the relevant integrals (for K <1, g=f8 y~y’)
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