Physics 417/517
Homework 2 Solutions

1. The frequency in time of the vertical oscillation is \/HQC /27 and the revolution

frequency is Q. /27 . Therefore, the time it takes to make 10 revolutions isloz—ﬂ.

The number of vertical oscillations is the product of these two numbers
Jn10=7.75. The number of radial oscillations is obtained by replacing Jn by

v1-n. The resulting number of oscillations is +/0.410 = 6.32. Several students
solved the problem using our “path length” variable s. The oscillation angular

“frequencies” in s are \/ﬁ/p and v1-n/ p, and the “frequencies” in s are
\/ﬁ/(Zﬂ'p) and v1-n/(2zp). The path length of 10 oscillations is10(27p) . Of
course, the final result does not depend on the variables in which it is evaluated.

2. This problem is a perfect example of the use of the magnetic rigidity. The
relativistic momentum of the electrons is p =+/y* —1m,c =/»* -=1(0.511 MeV/c),

the magnetic rigidity is /y> ~1(0.511MV/c),and 1 T = 1 (V sec)/(m’). Now

B:(B—lf))ZSin(HIZ)

for magnets in the normal configuration. The bend angles are /16 =0.19635 rad
for the first arc and 7/32=0.098175 rad for the rest of the arcs.

~|/(605/0511)° ~1x0.511x10°V

= 5 2sin0.098175=0.3956 T =3.956 kG
2.998x10° m/sec(1m)

~|/(1693/0.511)" ~1x0511x10°V
2 2.998x10° m/sec(1 m)

2sin0.04909 = 0.5542 T =5.542 kG

J(2781/0511)° ~1x0511x10°V __
B, = g 25i0.04909 = 0.4552 T = 4.552 kG
2.998x10° m/sec(2 m)

J(3868/0511) ~1x0511x10°V _
B, = : 25in 0.04909 = 0.4220 T = 4.220 kG
2.998x10° m/sec(3 m)

J(4956/0.511)° ~1x0.511x10°V __
B, = 5 2sin0.04909 = 0.5408 T =5.408 kG
2.998x10° m/sec(3 m)




Arc Electron Number of Dipole Bend Magnetic

Energy Dipoles Length Angle Field
(MeV) (m) (rad) (M)

1 605 16 1 0.19635 0.3956

2 1693 32 1 0.098175 0.5542

3 2781 32 2 0.098175 0.4552

4 3868 32 3 0.098175 0.4220

5 4956 32 3 0.098175 0.5408

3. Note the equation for the ellipse is
Ay +Exy+ y? _b
C C o
and one may compute the area of the region inside the ellipse as

Area = H dxdy

where to compute the integral, we need only specify properly the equation of the
boundary of the elliptical region. If the y-extent of the ellipse is computed as a
function of x, then

Xmax Y+ Xmax

Area = I Idydx = J (y, —y_)dx
Xmin Y- Xmin

where the y, and y_ are the equations of the upper and lower boundaries of the
elliptical region
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The limits in x are clearly where the two curves meet, i.e., those x-values where
the discriminate of the quadratic solution vanishes:
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Area = J‘ 2 D _AC-B x2dx

Consequently
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The final integral is evaluated by trigonometric substitution X =cosé. The value
is 7/2 (one-half the area of a circle of radius 1).
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One could have just as well evaluated the integral using the “area between two
curves” method from elementary calculus. Also, one could have solved the
quadratic for x, in as a function of y and sliced up the area horizontally,

performing the x integral first. Clearly the procedure to evaluate the integrals
would be identical, except the roles of A and C would be swapped. The final
answer is identical under the interchange of A and C, as it should be!

. Either cosh~/—ks and sinh~/—ks or exp+/—ks and exp—+/—ks could be used

as the fundamental solutions of the homogeneous equation to build up the transfer
matriX. Several students used each pair. In this particular solution let’s use the

pair coshv/—ks and sinhv/—ks.
{x(s)]: cosh(ﬂs) sinh \/_s (Aj
X(s) ﬁsinh(ﬁs) \/_cosh \/_s B
X(SO)]_ cosh(ﬂso) sinh \/_s ](A
«/Isinh(ﬂso) J=k cosh «/_s B
\/—_COSh(FS) —sinh \/_s (
=Y x/_smh\/_s) coshx/_s
(s) cosh \/_s smh(\/_s
] J_S|nh \/_S) FCOSh(J—_S)

1 \/—_cosh(ﬂso) —sinh(ﬁso) [X(So)j
=Y —ﬂsinh(ﬂso) cosh(ﬂso) X'(s)
[x(s)] cosh(ﬂ(s—so)) sinh(ﬂ(s—so))/ﬂ [X(SO)J'
X(s) J=ksinh (V=K (s=s,)) v=k cosh(vV=k (s-s,)) X (S,)
Using s—s, =L for a defocusing quad of length L, the transfer matrix is
cosh(ﬂL) sinh(ﬂL)/ﬂ
ﬂsinh(ﬂL) \/icosh(\/IL)
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5.

M:[—ung) 2]((1) Il_J(l/lf 2]((1) ﬂ[—l/zﬂ) (1)]
:[—1/220 1—LI/_(2f)](1/lf 2}[1:1%(22:)) ﬂ
) 1+L/f L 1-L/(2f) L
_[1/(2f)—L/(2f2) 1—L/(2f)J( -1/(2f) 1]

1+L/(2f)=L2/(2%)-L/(2f) 2L+ L7/ f
= (1/(2f)-L/(2F%)-L/(4F%)+ 2 /(41°) o
[ _@f)rLi(ar?) J L/(2f)-L17/(2f%)+1-L/(2f)

1-12/(21£7) 2L+ 12/ f
lLr(212)+ 2 0(a1°) 1-12/(2£7)
To get the matrix starting with the middle of the defocusing magnet replace f
with—f . The resulting transfer matrix is

M:[ll(12f) (1)](; I;j(—lllf 2)[; Ii][l/(lZf) SJ
=[ 1-17/(2f?) 2L—L2/f]

—L/(21%)-121(4F%) 1-L17/(2f?)

Clearly the matrix traces of the two resulting matrices are the same.



