Mathematical Supplement
Electromagnetic Theory (Physics 704/804)

Some Math we’ll need going forward
| will assume knowledge of vectors and vector fields

2-tensors: A 9-component object in 3-space (16 component object in 4-space) that transforms
as “squares” of vectors in 3-space (“squares” of 4-vectors in 4-space).

Let V=V X+V y+V,Z in3-space
Form the object (V) (V)= (va( +V, §+ vzi)(va( +V, §+ vzi) =V,V, XX+ V,V X§+---+V,V,77
and a correspondence between the squared object and 3 X 3 matrices (4 X 4 matrices) as
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Under a change of basis

with the matrix E nonsingular, to represent the same object, the vector components must be
transformed by
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where t denotes the transpose, and the components of the squared quantity must be transformed as
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because then
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VIVIEE + VIVHEE, +- -+ VRViEE, =V V, KX+ V, V,XJ +---+V,V, 77 .

Abstracting this idea, a 2-tensor is any 9-component (16-component) object whose components
transform as the matrix equation above under a change of basis. This type of definition of tensors, in
terms of transformation rules, is prevalent in the older literature, e.g., Einstein’s papers on general
relativity.

Going forward in the course, we shall generally write tensor components in terms of the standard

()A(, Y, f) basis or (Cf,)A(, Y, 2) “A-basis”.

The squaring operation above is an example of a more general notion called the tensor product.
As an example of this product: if V, =v, X+Vv, y+V,,Z and V, =V, X+V, y+V,,Z are vectors,

then the quantity
T=V,®V, =V, V, XX+ V,V, Xy +...+V,,V,,7Z,

because the basis vectors and vector components transform exactly as in squaring above, is a
nine component 2-tensor in 3-space. The tensor product, ®, which can be generalized beyond
this specific application, provides and very powerful way to generate new, higher rank tensors
from lower rank tensors. The tensor product is linear in each of its arguments.

(cu) @ v=u® (av) = a(u® v),
UR(V+W)=u@v+u@w,
(utv)@w

(U@ v) -w=mu(v w),

UEW+ VEW,

u- (vew)=(u-v)w,

Note, by definition,
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and XQV#J®X.

Not all 2-tensors can be written V, ® V, for some V, and V, (Exercise for reader: which ones can be so

written?), but all can be written as “9-sums” (16-sums)



T =t XX+t Xy +---+1,,77

for some real numbers t.

i called the components of the tensor in the standard basis, where i
and j extend from 1 to 3 (0 to 3). To prove this assertion note that if the 2-tensor is dotted into

the standard basis vectors

x>

t, =

TRty =XT Y, t;=2-T-Z,then T =t XX+t , Xy +---+1,,2Z .
The components are sometimes written in matrix form

t00 1:Ol t02 1:03
b, b

tiLl
t, t, t,|,orford4-space

1:31 t32 t33

and manipulated as a single entity.

Relationship between 3 by 3 matrices, 2-tensors, and bi-linear maps. Set up a correspondence

1 00
B0 0 0Ty (V,7,)=(%-R)(%-Y,)=V,V,,

0 0O

010
90 0 0Ty (v9,)=(%-R)(§V,)=v,v,,

0 0O

0 0O
|0 0 0| T,(V,7,)=(%-7)(2:V,) = vV,

01

Each of which is obviously bi-linear. Any bi-linear map L:R*xR® — R, can be represented by a
matrix, and hence by a corresponding tensor by expanding analogously to above. Let

L =L(%R), Ly =L(& §)+-, by = L(2,2), then L =1, 8R-+ 1,85 +--+ 1,27



is the corresponding 2-tensor that gives the map by L(\71, \72) =V, -L-V, (verify this assertion for

arbitraryV,and v, ).

A general 2-tensor defines a bi-linear map T :R°*xR* >R, T(V,,V,)=V,-T-V,, which, by the

tensor component transformation rule, does not depend on the basis in which it is evaluated
(verify!). For the standard basis it evaluates to

T (\711 \72) =1, V1, V), +t12lev2y +"'+t33V1zV2z .
Note

T (AV, +V,,V) =t (AVy, + V)V, + 1, (AVy, + VZX)Vy +o bty (AVy, +V,, )V,
= AV, Vv, +t,V, Vv, + ﬂgzlevy +1,V, v, o+ AtV LV, F LV, Y

2x 'y 1z %z 22%z
= AT (V, V) +T (V,,V),

and similarly T (V, AV, +V, ) = AT (V,V,)+T(V,V, ). So there is a direct one to one correspondence

between 2-tensors and bi-linear maps. Some authors use this equivalence to define tensors very
generally as multilinear maps on particular vector spaces. We will not need to employ this full generally.

A tensor is symmetric or antisymmetric depending on whether the representing matrix is symmetric or
antisymmetric. It is straightforward to show, using the change of basis formula, that this is a frame-
invariant notion.

Modern notation: Let the coordinates of R® be given by Xt=x, X2 = Y, X*=1z. Following standard

sloppy behavior not distinguishing the space R? from its tangent space, define the x-component
operator by

dx' (V) =dx(V)=X-V=v,.

X

This is a linear map in the tangent space to R3, which following standard procedure is identified with

R3, and defined regardless of where in R? the vector is situated. Likewise define

dx® (V) =dy (V)=
dx® (V) =dz(V)

V=
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With the numbering convention above, it is clear (trace this through!) that the general 3-space (4-space)
2-tensor is given as



T =t,dx' ®dx’,

where i and | are summed from 1 to 3 (0 to 3). Going forward, the following Einstein summation will

be followed. When an upper and lower latin index is used, the summation index goes from 1 to
3. When an upper and lower greek index is used, the sum proceeds from O (representing the
time coordinate) to 3.

In 3-space, the anti-symmetrical tensors have an additional specialized notation

0 0 O

dx’ Ad® =dx’ @dx’ —dxX’ ®@dx’ < {0 0 1| dyadz(V,V,)=V,V,, —V,,V,,
0 -1 0
0 0 -1

B Ad =d* @dx —dx' ®@dx’ < |0 0 0 | dzadx(V,V,)=V,V,, —V,V,,
1 0 O
0 1 0

dx' Adx® =dx' ®@dx* —dx’ ®dx' < | -1 0 0 | dxady(V,,V,)=V,,V,, =V, V,,
0 0O

These formulas should remind one of the projection of the vector cross product (with proper sign) onto
the missing coordinate axes. Also, one can give a more physical interpretation of the antisymmetric

product . dX A dy operating on the pair (\71, \72) gives the area of the parallelepiped whose edges are

formed by the projection of the two vectors into the x-y plane. Likewise dy A dz gives the area of the
parallelepiped whose edges are formed by the projection of the two vectors into the y-z plane, and

dz AdX the area after projection into the z-x plane. The order is important, positive means the
projection of V,, the projection of V,, and the remaining positive axis direction form a right handed set
of vectors. Also clearly, any antisymmetric tensor can be written as the sum of these three basis

tensors. For four space, 2- tensors have 16 components and the antisymmetic tensors have up to six
independent components. In this case, the basic antisymmetric tensors are



0 1 00
-1 0 0O
cdt A dx' = cdt ® dx* —cdx' ® dt <
0O 00O
0O 00O
0O 010
0O 00O
cdt A dx® = cdt ® dx® — cdx® @ dt <
-1 0 0 O
0O 00O
0O 0 0 1
O 00O
cdt A dx® = cdt ® dx® —cdx® ® dt <
0O 00O
-1 0 0 O
0O 0 0O
0O 0 1 0
dxt Adx? = dx* ® dx® —dx* @ dx! <
0 -1 00
0 0 0O
0 0 0 O
0 0 0 O
dx? Adxd =dx? ®dx® —dx® @ dx® <
0 0 0 1
0 0 -1 0
0 00 O
0 0 0 -1
dC Adx =d® @dxt —dx! ®dx® <
0 00 O
01 0 O

Differential Forms

In this course we’ll restrict ourselves to differential forms on flat 3-space, or on special relativity’s
Minkowski space. The same general constructions can be used, with even more power, on general
manifolds and the curved spacetimes of general relativity. These complications are not useful in a course
on electrodynamics. Also, we will generally assume that functions have “as many derivatives as
necessary” to ensure derivations are valid.



A differentiable function f :R® — R will be called a 0-form.

A 1-form is any mapping, linear on vector spaces, of the form

@' (V(xy,2))=a,(x,y,2)dx (V(x,y,2))+a, (X y,2)dx* (V(x, Y, 2))
+3, (X, y,2)dx* (V(x, Y,2)),

7

where the @, are differentiable functions, and as above, the dx' project out specific components of the
vector field at the location in question. 1-forms operate on vector fields and yield a scalar (i.e., basis

independent) O-form on evaluation with a specific vector field.

A 2-form is the analogous construction applied to antisymmetric 2-tensor fields. It is a bi-linear anti-
symmetric mapping of the form

@ (V,,V,) =adx* Adx®(V,,V, ) +a,dx’ Adx (V,,V,)

+a,dx" A dX? (V,,V,),

where, for convenience of notation, the (X, Y, Z) dependence of the @, and the two vector fields is

suppressed. It was noted above that any antisymmetric 2-tensor field must be of this form.
A 3-form, or totally antisymmetic 3-tensor field, is given as
@°(V,,V,,V,) = adx" Adx® Adx®* (V,,V,,V,) =
dx' @ dx* ® dx® + dx* ® dx® ® dx* + dx® ® dx' @ dx’ (
a
—dx' @ dx® @ dx* —dx* ® dx" ® dx® — dx® ® dx* ® dx*

\71’\72’\/3)

where ais a differentiable function. When evaluated on the triple (\71, \72,\73) , ®° | a yields the so-

called triple scalar product of the vectors V, -V, x V,, which is the oriented volume of the parallelliped

with sides given by the three vectors. There are no higher forms in 3-space. It is an exercise to write out
the corresponding forms, including the possibility of 4-forms, in Minkowski space.

Exterior Derivative Map d

In this document, the exterior derivative will be defined operationally. Refer to any good book on
differential forms for more complete derivations. The exterior product always carries an i -form to an

I +1-form and is evaluated using several basic rules

of of of =
1. df = 5_dx+_dy+8_dz when evaluated on a zero-form. The linear map df (V) is better
X yA

oy

known as the directional derivative of the function f in the direction V. Note that when



evaluated on the coordinate functions, it evaluates to the correct value. For example

dx=1-dx+0-dy+0-dz.
2. d (a/\ b) =danab +(—l)i andb where a isan i-form, the modified Leibnitz rule

3. The antisymmetric product A is anti-commutative on 1-forms (show this!!) and thus

dxAndx=dyAndy=dzadz=0

4. d*w=d (d a)) =0 for any form because mixed partial derivatives are always equal
Examples: Suppose the general 1-form is written in the following suggestive way
o' =adx" +a,dx” +a,dx’.

Then

do' = [Zii dx’ + ag dx? +%dx3)/\dxl+0

+(6a§ dxt + aag dx? + 8a§ dx3j AdX?+0
OX

OX OX

+(a—afdx1+a—a§dx2 +a—a§dX3j/\dX3+0:
OX OX OX

(a_a_jdd (%_%jdxmdxu(a_%_%jdx A G,
X OX ox' ox

Likewise if

” =a,dx* Adx® +a,dx* Adx' +a,dx" A dx?,

do’ = aaldx + aldx +aiidx j/\dx AdX+0

oxt OX? ox®
+ aaf dx! + aa; dx? + aa§ dx3J Ad Adxt+0
OX OX OX

+ Sdl 3dx+aa3 j/\dX/\dX+0—
X

oxt ox?
6_a1+6a ) dx! Adx® Adx®
oxt oxt ox®

If a regular vector is associated with a 1-form
w = v,dx',

d generates the (polar vector!) curl of the vector field. If a polar vector is associated with a 2-form



(03 = Sijkvidxj ® ka )

d generates the divergence of the starting vector field. Therefore, the standard gradient, divergence,
and curl operations in vector analysis are included as cases of the d operations in forms. We will take
the approach that the usual vector analysis is most naturally analyzed with mathematics of forms. The
following correspondences apply

{0-forms} <> { functions}

dl d grad
{1-forms} <> {vector fields}

dl d curl
{2-forms} <> { polar vector fields}

dd 4 div

{3-forms} <> { functions}

The fact that d? =0 is equivalent to the vector analysis statements that V x (Vf ) =0and

V-(VxV)=0.

Forms such that dw =0 are called closed. Forms @ that can be written as the exterior derivative of
another, lower degree, form @ = da, are called exact. It is a mathematical result, called the Poincaré
Lemma, that because R3 is simply connected (contractible is enough), all closed forms are exact in 3-
space. The same result applies in Minkowski space. In E&M theory this fact is used constantly,
particularly when the scalar potential and vector potential functions are introduced to represent
electromagnetic fields.

Integration and generalized Stokes Theorem.
0-forms cannot be integrated, only evaluated at specific locations.

1-forms are integrated as line integrals. Let C be a curve, open or closed parameterized by an
independent variable t. Then

Jo El(ai(z(t))j_f+az (}(1) L+, (X(t))%jdt.

For exact forms @' = d¢, the integral evaluates as the difference of the function
value¢()?(t')) —¢(7((t)) at the endpoints of the curve, )?(t') and 7(('[') . This is the case of a

conservative force field with ¢ the potential function. For a closed curve the line integral evaluates to

zero for exact 1-forms.



2-forms are integrated as surface integrals. Let S be a surface written, for example, as

(X, y,2=5(xY)). Now dz_%dx+%dy s0

J.a)z J‘( (% y.s(x, y))dyAngJra (%, y.5(x, y))—ydy/\dx+a (%, y.5(x, y))dXAdyJ
S

S

0s 0s
= I -, (X, y,s(x, y))——a (% ¥,5(%Y))—+a,(x y,5(x,y)) [dxdy
p(S) OX oy
where P (S) is the projected area of the surface into the X- Yy plane and the final integral is the usual
2-D multiple integral. Note that for the integral to make sense, S must be single-valued within the
integration domain p (S) . Total surface integrals must be broken up into sums of single-valued

portions in cases, such as when the surface is closed, where z is not uniquely determined by X and y .

It also may be convenient, and is possible, to express some portions of the surface using the
independent variables X and z or Yy and Z, or even using parametric representations of the surface,

in order to evaluate parts of, or the complete surface integral.

Now fi = (—82 [ox,—o0z | é'y,l) is in the direction of the normal to the surface. So

!wzz J (é-ﬁ)|ﬁ|dxdy:_£(é A)dA

p(S)

where dA s the local area element of the surface, that is projected down into the area element
dxdy by the magnitude of M. This final form of the integral is that usually found in vector analysis.

Flux integrals are performed by doing such surface integrals. The total surface integral evaluates to zero
on a closed surface (i.e., a surface with no boundary) if the 2-form is exact.

3-forms are integrated as signed volume integrals

_[af’ Eja(x, y,z)dxAdy Adz = Ia(x, y, 2 )dxdydz.
\% \%

\

where the final integral is the usual 3-d multiple integral.

Generalized Stokes Theorem (for a proof, and conditions for validity, see any good book on forms)



If M is a manifold and @ a form that exists throughout the manifold, then
_[da): .[ w
M oM

where OM is the boundary of M . We will be applying this theorem to various regions of 3-space and
Minkowski space, although it works for, and inside of much more general manifolds. Within it are the
main theorems of vector analysis.

Fundamental Theorem of Calculus: Appliedto[a,b]in R.If o= f

df
dx=f| =f(b)-f(a
I ot ro)-10a

Green’s Theorem: Applied to a simply connected region R of R%.If o= Pdx + Qdy

0Q oP
R axdy = [ Pdx+Qdy= [ (P+Qdy/dx)d
j( jxyajR X+Qdy I(+Qy X Jdx

R\ OX p(eR)
The second equality applies in the case that y(x) is the monotonic, and single-valued equation for the
boundary curve in terms of the independent variable X. Note thatif d@ =0, i.e. the form is exact, the

line integrals are always independent of path, as above.

Stoke’s Theorem: Applied to a simply connected surface in R*. If @ = Pdx +Qdy + Rdz and

A(xY,2)=(P(x¥.2),Q(xY,2),R(x,Y,2))

j(vXA) ds_j(@-aa—dey dz +(2—P—@jd2Adx+(Z—3—%jdXAdy

S z OX
= J' Pdx+Qdy + Rdz_mA dr.
oS

Note that if @ is exact, A= V ¢ for some function, and we again have independence of path. In this
case all surface integrals vanish, consistent with the usual vector analysis result that VxV¢ =0. A non-

zero line integral requires a curl to be generated.

Divergence, or Gauss’s Theorem: Applied to a simply connected volume in R3.If

®=Pdy Adz+Qdz Adx+Rdxady, A(X,Y,2)=(P(xY,2),Q(xY.2),R(X,Y,2))

J(v A)dv _j(gz 853 azjdx/\dy/\dz—g{/de/\dz+de/\dx+RdX/\dy (J\'/A AdS.



If  isexact,i.e., V- A=0 , then suppose cis a closed curve in boundary V. The flux integral through
the curve is independent of the bounding surface used to evaluate the flux . This is a 2-dimensional
result analogous to the path independent integrals for 1-forms. This result has implications for magnetic

field lines, which always must close as V - B=0.

Extra formulas in Jackson: Let Q = R =0 in the Divergence Theorem, and P =i/ . Then

I deAdyAdZ—Il//dyAdZ—jw A-X)dS.

Y

Likewise,

J.éljdX/\dy/\dZ—J.l//dZ/\dX—J.w §)dS and .[ ‘//dX/\dy/\dZ—J.l//dX/\dy J.y/ (f-Z)ds.

\

Summing with the constant unit vectors gives

[V ydxdydz = [ yiids
\Y oV
Using formulas like

IaaAy dx/\dy/\dz_J‘Ade/\dx_jAy (A-X)d

\Y

One readily verifies that

jvx Adxdydz = j Aix AdS.
\Y oV

Following a similar analysis, let Q = R =0 in Stokes Theorem, and P =/ . Then

o OV (~ s\ e _ [OW oy _
_[ pe (A-§)dS ——— o (n'z)ds_.!:EdZAdX_EdXAdy_é[WdX'

Likewise,

oy OV (n o\ qe oW [~ OW ;~
! —(f-%)ds +—~ (n-z)dS—aj;wdy, and !E(n.x)d ~(f-9)ds = jwdz_



Summing, with unit vectors as before yields

jﬁxvy/dszjy/dr.
S s

This document provides a condensed summary of the mathematics of forms that we will need going
forward. We will be expressing the electromagnetic field quantities in terms of forms; applying these
methods will allow one to derive fairly deep results more quickly and rigorously than is possible using
more standard vector analysis. One motivation for this adoption is the idea that “forms are made to be
integrated”. 1-forms are appropriately evaluated as line integrals, 2-forms are evaluated as surface
integrals, and 3-forms as volume integrals. One can work this backwards. If one has a physical quantity
best evaluated with a line integral, a 1-form is the appropriate description. Flux integrals must be
completed with a 2-form. Quantities that involve volume densities, for example the charge density, are
best represented as 3-forms.



