### Design Status of Medium-energy Electron-Ion Collider at JLab

### Vasiliy Morozov for Jefferson Lab EIC Study Group



JLab User's Group Annual Meeting, 5 June 2012, Newport News, VA



## Outline

- Introduction
- MEIC conceptual design
  - High luminosity concept
  - Polarized beam design
- Detector integration and performance
- Electron cooler
- Outlook





## **EIC** as JLab's Future

- JLab's fixed target program after 12 GeV CEBAF upgrade will be worldleading for at least a decade.
- A *M*edium-energy *E*lectron-*I*on *C*ollider (MEIC) at JLab will open new frontiers in nuclear science.
- The timing of MEIC construction can be tailored to match available DOE-NP funding while the 12 GeV physics program continues.
- MEIC parameters are chosen to optimize science, technology development, and project cost. We maintain a well defined path for future upgrade to higher energies and luminosity.
- A conceptual machine design has been completed, providing a base for performance evaluation, cost estimation, and technical risk assessment





## **MEIC Design Parameters**

- **Energy** (bridging the gap of 12 GeV CEBAF & HERA/LHeC)
  - Full coverage of s from a few 100 to a few 1000 GeV<sup>2</sup>
  - Electrons 3-11 GeV, protons 20-100 GeV, ions 12-40 GeV/u
- Ion species
  - Polarized light ions: p, d, <sup>3</sup>He, and possibly Li
  - Un-polarized light to heavy ions up to A above 200 (Au, Pb)
- Up to 3 detectors
  - One optimized for full acceptance, another for high luminosity
- Luminosity
  - Greater than 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> per interaction point
  - Maximum luminosity should optimally be around  $\sqrt{s}$ =45 GeV
- Polarization
  - At IP: longitudinal for both beams, transverse for ions only
  - All polarizations >70% desirable
- Upgradeable to higher energies and luminosity
  - 20 GeV electron, 250 GeV proton, and 100 GeV/u ion





## **MEIC Layout**





JLab User's Group Annual Meeting, 5 June 2012



## **Stacked Figure-8 Rings**



Jefferson Lab

•

•

JLab User's Group Annual Meeting, 5 June 2012

### **MEIC and Upgrade on JLab Site Map**





JLab User's Group Annual Meeting, 5 June 2012



## **Design Features: High Luminosity**

#### Based on the following concepts

- Very short bunch length
- Small transverse emittance
- Very high bunch repetition rate
- Very small bunch charge
- Very small β\*
- Crab crossing
- A proved concept: KEK-B @ 2x10<sup>34</sup> /cm<sup>2</sup>/s
- JLab will replicate the same success in colliders w/ hadron beams
  - The electron beam from CEBAF possesses a high bunch repetition rate
  - Ion beams from a new ion complex can match the electron beam

|                                                                              |                                  | KEK-B     | MEIC              | eRHIC       |
|------------------------------------------------------------------------------|----------------------------------|-----------|-------------------|-------------|
| Repetition rate                                                              | MHz                              | 509       | 748.5             | 13.1        |
| Particles per bunch (e <sup>-</sup> /e <sup>+</sup> ) or (p/e <sup>-</sup> ) | <b>10</b> <sup>10</sup>          | 3.3/1.4   | 0.42 <b>/ 2.5</b> | 20 / 2.4    |
| Beam current                                                                 | Α                                | 1.2/1.8   | 0.5 / 3           | 0.42 / 0.05 |
| Bunch length                                                                 | cm                               | 0.6       | 1 / 0.75          | 8.3 / 0.2   |
| Horizontal & vertical β*                                                     | cm                               | 56 / 0.56 | 10/2 to 4/0.8     | 5/5         |
| Beam energy (e <sup>-</sup> /e <sup>+</sup> ) or (p/e <sup>-</sup> )         | GeV                              | 8/3.5     | 60 / 5            | 250 / 10    |
| Luminosity per IP, 10 <sup>34</sup>                                          | cm <sup>-2</sup> s <sup>-1</sup> | 2         | 0.56 ~ 1.4        | 0.97        |



JLab User's Group Annual Meeting, 5 June 2012



### Parameters for *Full Acceptance* Interaction Point

|                                  |                                  | Proton | Electron   |
|----------------------------------|----------------------------------|--------|------------|
| Beam energy                      | GeV                              | 60     | 5          |
| Collision frequency              | MHz                              | 750    | 750        |
| Particles per bunch              | 10 <sup>10</sup>                 | 0.416  | 2.5        |
| Beam Current                     | А                                | 0.5    | 3          |
| Polarization                     | %                                | > 70   | ~ 80       |
| Energy spread                    | 10-4                             | ~ 3    | 7.1        |
| RMS bunch length                 | mm                               | 10     | 7.5        |
| Horizontal emittance, normalized | µm rad                           | 0.35   | 54         |
| Vertical emittance, normalized   | µm rad                           | 0.07   | 11         |
| Horizontal β*                    | cm                               | 10 🔪   | 10         |
| Vertical β*                      | cm                               | 2      | 2          |
| Vertical beam-beam tune shift    |                                  | 0.014  | 0.03       |
| Laslett tune shift               |                                  | 0.06   | Very small |
| Distance from IP to 1st FF quad  | m                                | 7      | 3.5        |
| Luminosity per IP, 1033          | cm <sup>-2</sup> s <sup>-1</sup> | Ę      | 5.6        |



JLab User's Group Annual Meeting, 5 June 2012



### Parameters for <u>High Luminosity</u> Interaction Point

|                                             |                                  | Proton | Electron   |
|---------------------------------------------|----------------------------------|--------|------------|
| Beam energy                                 | GeV                              | 60     | 5          |
| Collision frequency                         | MHz                              | 750    | 750        |
| Particles per bunch                         | 10 <sup>10</sup>                 | 0.416  | 2.5        |
| Beam Current                                | А                                | 0.5    | 3          |
| Polarization                                | %                                | > 70   | ~ 80       |
| Energy spread                               | 10-4                             | ~ 3    | 7.1        |
| RMS bunch length                            | mm                               | 10     | 7.5        |
| Horizontal emittance, normalized            | µm rad                           | 0.35   | 54         |
| Vertical emittance, normalized              | µm rad                           | 0.07   | 11         |
| Horizontal β*                               | cm                               | 4      | 4          |
| Vertical β*                                 | cm                               | 0.8    | 0.8        |
| Vertical beam-beam tune shift               |                                  | 0.014  | 0.03       |
| Laslett tune shift                          |                                  | 0.06   | Very small |
| Distance from IP to 1 <sup>st</sup> FF quad | m                                | 4.5    | 3.5        |
| Luminosity per IP, 1033                     | cm <sup>-2</sup> s <sup>-1</sup> | 14     | 4.2        |



JLab User's Group Annual Meeting, 5 June 2012



## **Design Features: High Polarization**

- All ion rings (two booster, collider) have a figure-8 shape
  - Spin precessions in the left & right parts of the ring are exactly cancelled
  - Net spin precession (spin tune) is zero, thus energy independent
  - Ensures spin preservation and ease of spin manipulation
  - Avoids energy-dependent spin sensitivity for ion all species
  - The only practical way to accommodate polarized deuterons

This design feature promises a high polarization for all light ion beams

(The electron ring has a similar shape since it shares a tunnel with the ion collider ring)

Use Siberian Snakes/solenoids to arrange polarization at IPs





JLab User's Group Annual Meeting, 5 June 2012



### **MEIC Primary Full-Acceptance Detector**

- Large 50 mrad crossing angle: no parasitic collisions, improved detection, fast beam separation
- Forward small-angle hadrons pass through large-aperture FFB quads before detection
- FFB / spectrometer dipole combo optimized for acceptance and detector resolution



## **Interaction region: lons**



- Distance from the IP to the first FF quad = 7 m
- Maximum quad pole tip field at 100 GeV/c = 6 T
  - Allows ±0.5° forward detection
  - Evaluating detailed detector integration and positions of collimators
- Symmetric CCB design for efficient chromatic correction

#### Whole Interaction Region: 158 m



13





JLab User's Group Annual Meeting, 5 June 2012

### **Chromaticity and Dynamic Aperture**

Compensation of chromaticity with 2 sextupole families only using symmetry



Non-linear dynamic aperture optimization under way



**Normalized Dynamic Aperture** 





JLab User's Group Annual Meeting, 5 June 2012



### **3D Detector Model**





JLab User's Group Annual Meeting, 5 June 2012





### **Acceptance of Downstream Ion FFB**

- 60 GeV/c protons, uniform spreads:  $\pm$ 0.7 in  $\Delta$ p/p and  $\pm$ 1° in horizontal/vertical angle
- Apertures: Quads = 9, 9, 7 T / ( $\partial B_v / \partial x @ 100 \text{ GeV/c}$ )





JLab User's Group Annual Meeting, 5 June 2012



## **Momentum & Angle Resolution**

- Protons with  $\Delta p/p$  spread launched at different angles to nominal 60 GeV/c trajectory
- Red hashed band indicates  $\pm 10\sigma$  beam stay-clear



#### $|\Delta p/p| > 0.005 @ \theta_{x,y} = 0$



JLab User's Group Annual Meeting, 5 June 2012



## **Electron Cooling**

- Essential to achieve high luminosity for MEIC
- Traditional electron cooling, not Coherent Electron Cooling
- MEIC cooling scheme Pre-booster: Cooling for assisting accumulation of positive ion beams (Using a low energy DC electron beam, existing technology)

Collider ring: Initial cooling after injection Final cooling after boost & re-bunching, for reaching design values Continuous cooling during collision for suppressing IBS (Using new technologies)

- Challenges in cooling at MEIC collider ring
  - High ion energy

(State-of-the-art: Fermilab recycler, 8 GeV anti-proton, DC e-beam)

• High current, high bunch repetition rate CW cooling electron beam





## **ERL Circulator Electron Cooler**



### Optimization

 reduce return path to improve cooling rate and beam dynamics

# 30 m Solenoid (20 m) injector SRF dump

### **Design challenges**

- Large RF power (up to 81 MW)
- Long gun lifetime (average current 1.5 A)

### **Proposed solution**

- Energy Recovery Linac (ERL)
- Compact circulator ring

### **Required technologies**

- High bunch charge magnetized gun
- High current ERL (55 MeV, 15 to150 mA)
- Ultra fast kicker

### Proposal: A technology demonstration using JLab FEL facility





JLab User's Group Annual Meeting, 5 June 2012



## Immediate Outlook and R&D

### Electron cooling

- Electron cooling of medium energy ion beam (by simulations)
- ERL circulator cooler design optimization, technology development
- ERL-circulator cooler demo (using JLab FEL facility)

### Interaction region

- Detector integration
- Sufficient dynamic aperture with low beta insertions

### Polarization

- Demonstrate superior ion polarization with figure-8 ring
- Electron spin matching

### Collective beam effects

- Beam-beam with crab crossing
- Space charge effects in pre-booster
- Electron cloud in the ion rings and mitigation

### Ion Injector complex optimization and beam studies





## **JLab EIC Study Group**

A. Accardi, S. Ahmed, A. Bogacz, P. Chevtsov, Ya. Derbenev, D. Douglas, R. Ent,
V. Guzey, T. Horn, A. Hutton, C. Hyde, G. Krafft, R. Li, F. Lin, F. Marhauser,
R. McKeown, V. Morozov, P. Nadel-Turonski, E. Nissen, F. Pilat, A. Prokudin,
R. Rimmer, T. Satogata, M. Spata, C. Tennat, B. Terzić, H. Wang, C. Weiss,
B. Yunn, Y. Zhang --- Thomas Jefferson National Accelerator Facility

J. Delayen, S. DeSilva, H. Sayed -- Old Dominion University

M. Sullivan -- Stanford Linear Accelerator Laboratory

S. Manikonda, P. Ostroumov -- Argonne National Laboratory

S. Abeyratne, B. Erdelyi -- Northern Illinois University

V. Dudnikov, R. Johnson -- Muons, Inc

A. Kondratenko -- STL "Zaryad", Novosibirsk, Russian Federation

Y. Kim -- Idaho State University





## **Crab Crossing**

- Restore effective head-on bunch collisions with 50 mrad crossing angle  $\Rightarrow$  Preserve luminosity
- Dispersive crabbing (regular accelerating / bunching cavities in dispersive region) vs. Deflection crabbing (novel TEM-type SRF cavity at ODU/JLab, very promising!)





JLab User's Group Annual Meeting, 5 June 2012

