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High Field Spectral Distribution vt}

In the beam frame
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In the lab frame

dEperp,n — ez 1 7/*2 (1_ﬂ*z COS 0)2
dadQ  2¢ y*2(1- p* cos@)  sin®Ocos’ ¢

S1n 2 ‘A 2 2
.{S J/rn} Sin ¢an(a);na)(6’))

R G
dE,,., e’ 1 s sin @

ddQ B 2C 7/*2 (]__IB*Z COSH)Z Szn 7/*(1—,8*2 COS(9)

. N sin & cos @

f v (@nw(0))~ Sin_(”nN“)(l_IB*z cos6)/ f*, ne,)
sin(zw(L— B*, cos @)/ B*, nay,)

Thomas Jefferson National Accelerator Facili \
.geffegon Lab Y @ E‘JSA

USPAS Accelerator Physics June 2016

2
+

fou(@ina(0))




fon(@;neo(0))

dE 2 =~ 2
e _ €15 g SN0
dedQ)  2c sin“ & cos” ¢

2

S, (cos@—pB*))

dE.., _€°|(1-p*,cosd)sing
dwdQ) 2c . S,
nsin@cosé

fon(@ine(0))

f.n 1S highly peaked, with peak value nN, around angular frequency

2

*
nw(0)= P, o, —2y* B* nw, ~ 2y nw, as 6 —0

(1- g*, coso) 1+K?/2

Thomas Jefferson National Accelerator Facili \
.geffegon Lab Y @ E‘JSA

USPAS Accelerator Physics June 2016



Energy Distribution in Lab Frame
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In the Forward Direction X7

In the forward direction even harmonics vanish (n+2k’ term
vanishes when “x” Bessel function non-zero at zero argument,
and all other terms in sum vanish with a power higher than 2 as

the argument goes to zero), and for odd harmonics only
n+2k°=1,-1 contribute to the sum

2
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Number Spectral Angular Density

Converting the energy density into an number density by dividing
by the photon energy (don’t forget both signs of frequency!)
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Peak value In the forward direction
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Radiation Pattern: Qualitatively

Non-zero Angular 0
mm Density Emission at Y
a Given Frequency

T \‘/ ‘
=1 — _
Doppler Downshifted
/ Harmonic Radiation

Central cone: high angular density region around forward
direction

Central Cone
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Dimension Estimates

Harmonic bands at

1 ]
0, :;\/ﬁ(“ K2/2)

Central cone size estimated by requiring Gaussian distribution
with correct peak value integrate over solid angle to the same
number of total photons as integrating f

2
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Much narrower than typical opening angle for bend

* Thomas Jefferson National Accelerator Facili \
.geffegon Lab Y @ @JSA

USPAS Accelerator Physics June 2016



Number Spectral Density (Flux)

The flux in the central cone is obtained by estimating solid angle
Integral by the peak angular density multiplied by the Gaussian
Integral
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Power Angular Density
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For K less than or of order one
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ERL light source idea

Third generation light sources are storage ring based facilities
optimized for production of high brilliance x-rays through
spontaneous synchrotron radiation. The technology is mature, and
while some improvement in the future 1s likely, one ought to ask
whether an alternative approach exists.

Two orthogonal 1deas (both linac based) are XFEL and ERL. XFEL
will not be spontaneous synchrotron radiation source, but will
deliver GW peak powers of transversely coherent radiation at very
low duty factor. The source parameters are very interesting and at
the same time very different from any existing light source.

ERL aspires to do better what storage rings are very good at: to
provide radiation in quasi-continuous fashion with superior
brilliance, monochromaticity and shorter pulses.

USPAS Accelerator Physics June 2016
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Coherent or incoherent?

Radiation field from a single £™ electron in a bunch:

E, =E,exp(iot,)
Radiation field from the whole bunch oc bunching factor (56.f.)

Ne
b.f.= iZexp(ia)tk)

Ne k=1

Radiation Intensity:
| = 1,|b.f| N2

1) “long bunch™ elzctmn => incoherent (conventional) SR
2) “short bunch” or[wfl%ﬁnqyi}\%: | =1,N> coherent (FELs) SR

Cbfl<1 T~ 1gNg

ERL hard x-ray source is envisioned to use conventional SR
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Demand for X-rays
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X-ray characteristics needed

» for properly tuned undulator: X-ray phase space is
a replica from electron bunch + convolution with the
diffraction limit —

« ideally, one wants the phase space to be diffraction
limited (i.e. full transverse coherence), e.g.

€ rms = M4m, or 0.1 A for 8 keV X-rays (Cu K), or
0.1 um normalized at 5 GeV

Flux ph/s/0.1%bw
Brightness ph/s/mrad?/0.1%bw
Brilliance ph/s/imm?/mrad?/0.1%bw
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Introduction @

Let’s review why ERL is a good idea for a light source

Critical electron beam parameters for X-ray production:

6D Phase Space Area:

— Horizontal Emittance {x, x’}
— Vertical Emittance {y, y’}

— Energy Spread & Bunch length
{AE, t}

Number of Electrons / Bunch,
Bunch Rep Rate: 1 ... |

peak® ‘average
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Introduction: adiabatic damping @@@

Px P1 Px P>
0
B8 linac 2,

\ 1’X> pl’z X > >
< D O am™»
electron bunch

£, £, =&, P12
p2,z
geometric | —— normalized

. &
x,0) | &= ﬁ:( x, P )

mc2

€, Is Iinvariant since
{x; p, = mc?By-6,} form canonically conjugate variables
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Introduction: storage rings (I)

Equilibrium

Quantum EXxcitation VS. Radiative Damping

E y '\ unperturbed trajectory

g Z pOJj- ————— p_ N __A

/ | 0 / p,-f
new trajectory ‘ p .4
reference orbit
P,
-Ap,~” J[ ~ -Ap.

doz . _,

th - N phEph

V

Emittance (hor.), Energy Spread, Bunch Length
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Introduction: storage rings (1I) Va7

Touschek Effect
e1 e

J lpl In XT
/+ D1 out T D2 out Z

* e p2 in

T
Beam Lifetime vs. Space Charge Density
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Why an ERL?
O

ESRF 6 GeV @ 200 mA ERL 5 GeV @ 10-100 mA

£,=4 nm mrad
g, = 0.02 nm mrad
B ~ 102° ph/s/mm?/mrad?/0.1%BW

Lpo=5m

€= €,— 0.01 nm mrad
B ~ 1023 ph/s/mm?/mrad?/0.1%BW
Lp=25m

ERL (no compression) ESRE
ERL (w/ compression) /

\
//Jk

.geffgon Lab

v

Thomas Jefferson National Accelerator Facility @ g_jSA

USPAS Accelerator Physics June 2016



Comparing present and future

SOUrces
electron beam brilliance electron beam monochromaticity
| /&2 +(A147)2 &2 + (A1 4n)’ 1/5(c, | E)

N\ e

Al(nm-rad)? x max N4

e N

A/(nm-rad)? compares brilliance ~ A/(nm-rad)’> x max N4
from two short identical (K, N ,) compares maximum achievable
undulators brilliance
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1 Angstrom brilliance comparison @

A/(nm-rad)?
O_’_NSLS-II . ~ USR PS

ERL better by 281222 266 1206 s,
short IDs | D .Emittance. is >.£O.better._(.briightness. 100 times) | | i
100 x ESRF than what shows in our Phase I proposal T 1550
5 0 X PETRA i The comparison shows why this is essential i
14 x NSLS-II = ,
IS SN ST ST S 400
1.5 x USR S 0z |
S oo 350
: .
. : 300
D 015 L e d
Max Length IDs 400 11000 250

Petralll APS  Spring-8

560 x ESRF
R 7.8 | 1824433 | 2083.7 1 182{'

280 x PETRA
64 x NSLS-II 3 4
7 x USR

E’nergys (Ge V)7

ERL emittance 1s taken to be (PRSTAB 8 (2005) 034202)
g [mm-mrad] ~ (0.73+0.15/c [mm]??3) x q[nC]
plus a factor of 2 emittance growth for horizontal
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Cornell vision of ERL light source  (§

To continue the long-standing tradition of pioneering research in
synchrotron radiation, Cornell University is carefully looking into
constructing a first ERL hard x-ray light source.

But first...

ROAEAT J. KANE |
~SPORTS COMPLEX | &R
p | | YHal g Lar

: : g
Sg

i v Rebealch &
/ (indhon ST eactung Unit

vlL-_— 3
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Need for the ERL prototype

Issues include:

= CW injector: produce i,,,>100 mA, ¢, ~80 pC @ 1300 MHz,
g, <1 mm mr, low halo with very good photo-cathode longevity.

= Maintain high Q and E,_. in high current beam conditions.
= Extract HOM's with very high efficiency (P,oy~ 10x previous ).

= Control BBU by improved HOM damping, parameterize i,

= How to operate with hi Q (control microphonics & Lorentz
detuning).

* Produce + meas. o,~ 100 fswith q,,,, ~0.3-0.4 nC(i,,, < 100
mA), understand / control CSR, understand limits on simultaneous
brilliance and short pulses.

= Check, improve beam codes. Investigate multipass schemes.

Our conclusion: An ERL Prototype is needed to resolve outstanding
technology and accelerator physics issues before a large ERL is built

Thomas Jefferson National Accelerator Facili :
J)effegon Lab ¥ @
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ERL PROTOTYPE

Energy 100 MeV Injection Energy 5 - 15 MeV
Max Avg. Current 100 mA E...@ Qg 20 MeV/m @ 1019
Charge / bunch 1 -400 pC Bunch Length 2—0.1ps

Emittance (norm.)< 2 mm mr@77 pC
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Injector Parameters:

Beam Energy Range 5 — 152 MeV
Max Average Beam Current 100 mA
Max Bunch Rep. Rate @ 77 pC 1.3 GHz
Transverse Emittance, rms (norm.) <1°um
Bunch Length, rms 2.1 ps
Energy Spread, rms 0.2 %

& at reduced average current
b corresponds to 77 pC/bunch

Thomas Jefferson National Accelerator Facili \
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To learn more about Cornell ERL

Two web-sites are available

1) Information about Cornell ERL, X-ray science
applications, other related projects worldwide

http://erl.chess.cornell.edu/

2) ERL technical memorandum series
http://www.lepp.cornell.edu/public/ERL/

Thomas Jefferson National Accelerator Facility
USPAS Accelerator Physics June 2016
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Bend Undulator

Wicalaw

ho

A A

»
|

Flux [ph/s/0.1%bw]
Brightness
[ph/s/mm?/mr?/0.1%bw]
Flux [ph/s/0.1%bw]

[ A [ »

ho ho ho

white source partially coherent source powerful white source
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Undulator Radiation from Single

v Electron |
| | | B, =B, sink,z
S N S A
X / HJY:J K =93.4B,[T]4,[m]
K/

/\u/\\* . Halbach permanent magnet undulator:
v s B,[T]=3.33exp[—«(5.47 —1.8x)]
‘ N ‘ ‘ S for SmCos, here x =gap/A,

IF
«— 7\‘p  —
Approaches:
1. Solve equation of motion (trivial), grab Jackson and calculate retarded potentials
(not so trivial — usually done in the far field approximation). Fourier Transform the
field seen by the observer to get the spectrum.

More intuitively in the electron rest frame:
2. Doppler shift to the lab frame (nearly) simple harmonic oscillator radiation.
3. Doppler shift Thomson back-scattered undulator field “photons™.

Or simply

4. Write interference condition of wavefront emitted by the electron.

Thomas Jefferson National Accelerator Facili \
.geffegon Lab Y @ @JSA

USPAS Accelerator Physics June 2016



Intuitive understanding of undulato
radiation

1n e frame

.!effegon Lab
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— / :
A d_P A d_P
dQ dQ
2 Ao 1
off-axis S o N
T 5
w w
0, . @, .
back to lab frame after pin-hole aperture
P
 doY
0
p 2 .22
Ao 1 Ay =——(A+5 K" +y°0%)
flee N 2y°n
AL 1
L ~ (for fixed 0 only!)
ho' /ln nN 0
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Higher Harmonics / Wiggler

~K >1
LK <<1

motion in € frame

K <1 undulator
K> 1 wiggler

3K (, K2
N, =—|1+—
4 2

critical harmonic number fol'@v
(in analogy to @, of bending magnet)

.!effegon Lab

v

K
1
2
4

27

8

198

wiggler

bR
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Total Radiation Power

E[GeV]*K?
Po= T aho)C W IKINY ] or R W] =726 200

e A [cm]?

L[m]I[A]

e.g. about 1 photon from each electron in a 100-pole undulator, or
1 kW c.w. power from 1 m insertion device for beam current of
100 mA @ 5 GeV, K=1.5, 4,=2 cm

Note: the radiated power is independent from electron beam energy if one can
keep B 4, = const, while 4, ~ y* to provide the same radiation wavelength.
(e.g. low energy synchrotron and Thomson scattering light sources)

However, most of this power is discarded (bw ~ 1). Only a small fraction is used.

Radiation Needed
wavelength 0.1 —2 A (if a hard x-ray source)
bw 102-10* “ temporal coherence
small source size & divergence < spatial coherence
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Undulator Central Cone

Select with a pin-hole aperture the cone:

‘ PN o LS
="V AN VaL

Ao 1
to get bw: ~

0, nN

n

Flux in the central cone from nth harmonic in bw Aw/w,:
1

: Aw | I K 09
Nph :ﬂaN——gn(K)S ﬂd—w 08 |
n
w, € e n 07 |
0.6
Note: the number of photons in bw ~ 1/N is about 2 %0-5-
% max of the number of e~ for any-length undulator. zz
0.2 4
P 39,(K) 1 o
Undulator “efficiency”: —— < — 90 - ) > T ..
F)'[ot K (1+§K ) Np K 2[ ]
i nK<[JJ
Function g,(K) =
g,(K) 1+ 1K?)
Thomas Jefferson National Accelerator Facility JSA
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A Word on Coherence of Undulator

Radiation contained in the central cone is transversely coherent (no beam emittance!)

apparent Young’s double-slit interference condition:
source disk rd
—~1
in Fraunhofer limit:
=L =g ~JaIL
|< _ 6.~r/R
= R "l
same as central cone
Spatial coherence (rms): r-6. = A/4x
- A
Temporal coherence: | = 22 /(2A4), t =1 /c X-ray source :
Photon d A, =N_ t Rings <
oton degeneracy: = N
R ERLs >1
XFEL >>1

Next, we will study the effect of finite beam 6D emittance on undulator radiation.
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Brightness Definition: Geometric

Brightness is a measure of spatlaﬁ)(tEnsverssﬁ coherence of radiation. Spectral brlghtness
(per 0.1 % BW) is usually quoted as a figure of merit, which also reflects temporal
coherence of the beam. The word “spectral” is often omitted. Peak spectral brightness is
proportional to photon degeneracy.

For the most parts we will follow K-J Kim’s arguments regarding brightness definitions.

A ray coordinate in 4D phase space is defined as X =(X, V), @ = (o, y)
d*F
d*Xd’g

B(X,;2) =

Brightness is invariant in lossless linear optics as well as flux: F = j B(X,;2)d*Xd’¢

d’F . _ d°F
while flux densities are not: = [B(x,%:2)d°%, = = [B(x.@;2)d?p =inv

* Thomas Jefferson National Accelerator Facili \
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Brightness Definition: Wave Optics

o = do 2¢,C e L = L .
Bein) =3 T [d?E(E) (@+E12,2)E, (p-E122))e™
dow 2&,C ¢ o o L
T [d2Y(E] (% +V/2:2)E,, (X~ ¥/ 2:2))e "

here electric field in frequency domain is given in either coordinate or angular
representation. Far-field (angular) pattern is equivalent to the Fourier transform of the
near-field (coordinate) pattern:

1 — —ikp-% = v —ik@-X —
Ew,(pzijwyx(x;z)e AR < Ew,X:jEw(x,z)e N k7

A word of caution: brightness as defined in wave optics may have negative values when
diffraction becomes important. One way to deal with that is to evaluate brightness when
diffraction is not important (e.g. z = 0) and use optics transform thereafter.

* Thomas Jefferson National Accelerator Facili \
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Diffraction Limit Va7

Gaussian laser beam equation:

N oo (2] L 1 ik
E(X,z)=E, W(Z)exp{{kz COt(zRﬂ X{WZ(Z) ZR(Z)}}

W (z) =W, (L+2°/22)
Zp =W, | A
R(z)=z(l+12:/2%)

With corresponding brightness:

_ o 1| (X—2p)*> @°
B(x,go;z):BOexp{—z{( f) +¢2}}

o, (o

o, =W,/2, o, =1/kw,

o0, =A14r B F B,

- |:co
Jr /O-r’ = ZR ’ (27Z-Grar’)2 h (1/2)2
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Effect of Electron Distribution

Previous result from undulator treatment:

€ 0]
E, . (:0)=
00 (#70) Arte,C AN 21

[ dtee *©Ofix (fix B(t)), here fi=($,1-3°/2)

The field in terms of reference electron trajectory for it"-electron is given by:

L, (70) = ES, (9~ §L;0)e 2t

phase of it"-electron

For brightness we need to evaluate the following ensemble average for all electrons:

Ne

(E.,(@:0)E, ,(3,:0)) = > (El (#0)E,,(#,:0) =N,

i=1

+Z<Eci:,¢ ((51;0) E(J;,,(/, ((52;0)> oC Ne(Ne _1) e—kzaz2

i#]

24 term is the “FEL” term. Typically N_e ™ <<1 , so only the 1%t term is important.
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Effect of Electron Distribution X7

(E; o @0)E, , (3,10)) ~ N, (" @ ED (5, -1 0)ED, (7, — #,0))

B(X, #:0) = N, (B* (X~ %, %~ 3::0))

=N, [B°(X~%..6-3..0)f (X,.6,:0)d°X.0°
\

electron distribution

Brightness due to single electron has been already introduced. Total brightness becomes
a convolution of single electron brightness with electron distribution function.

Brightness on axis due to single electron: — flux in the central cone
F 0
(/1/2)2

B°(0,0:0) =

Thomas Jefferson National Accelerator Facili \
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Finite Beam Emittance Effect

Oftentimes brightness from a single electron is approximated by Gaussian:

. FO 1[x2 &
B*(X,9:0) = (112)° exp{_z{a”a%}}

r

o, =~N2AL/4r, o, =~A/2L

Including the electron beam effects, amplitude and sigma’s of brightness become:

F
B(0,0;0) = ——
(272- ) O-TXGTX'GTyGTy
2 2 2 2 01 212, 1 ..212 2 2 2
O =0, o, ta"+5;0,L" +5:0°L O1y =0, +0y
2 2 2 1 212 1,,,212 2 2 2
o, =0, +to,+5;0,L"+5:p°L Ory =0, +0y
Thomas Jefferson National Accelerator Facility
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Matching Electron Beam

Matched B-function is given by (beam waist at the center of undulator):

B =cloc.=LI2x

X,y

Brightness on axis becomes:

B(0,0.0) = —— / L

> «_ transversely coherent fraction
(472) (]_4_ X )[ &y j of the central cone flux

_|_
Aldr Aldr

Matched B-function has a broad minimum (for &/(A/4rx) <<lor el/(Al4r) >>1)

(V2 min for P=2Lel A
o,or.=4 min  for  pB=L/2x
J2min for B~ ALI(8x%)

alsoif e ~Al4nr =
B~6p% ~L isstillacceptable

~
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Energy Spread of the Beam

Energy spread of the beam can degrade brightness of undulators with many periods.

If the number of undulator periods is much greater than N; =0.2/ o5 | brightness
will not grow with the number of periods.

Maximal spectral brightness on axis becomes

F 1 1

(112)° e, £, N )
(“ /1/472)[1+ /1/47[] \/1+[Nj

B(0,0;0) =
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Photon Degeneracy

Number of photons in a single quantum mode:

h h
hko,o, ~ > hko,o, ~ > 00, ®

N | Sk

Peak brightness is a measure of photon degeneracy

3
A = Bpeak(ij Al
2) A C

E.g. maximum photon degeneracy that is available from undulator (non-FEL)

3
AT zaﬁ N.N-g. (K) more typically, however: A_ =10« A N, 90 (K)
o g.&,8 n
, - / x“y®z

diffraction-limited emittance dominated
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More reading on synchrotron radiation

1.

K.J. Kim, Characteristics of Synchrotron Radiation, AIP Conference
Proceedings 189 (1989) pp.565-632

R.P. Walker, Insertion Devices: Undulators and Wigglers, CERN
Accelerator School 98-04 (1998) pp.129-190, and references therein.

Available on the Internet at http://preprints.cern.ch/cernrep/1998/98-
04/98-04.html

. B. Lengeler, Coherence in X-ray physics, Naturwissenschaften 88

(2001) pp. 249-260, and references therein.

D. Attwood, Soft X-rays and Extreme UV Radiation: Principles and
Applications, Cambridge University Press, 1999. Chapters 5
(Synchrotron Radiation) and 8 (Coherence at Short Wavelength) and
references therein.
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Oscillator FEL

electron beam

.geffegon Lab

undulator

raesonator
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Free Electron Laser, Optical Klystr

e Principle

— Stimulate emission of EM radiation from relativistic

electron beam through interaction with an external EM
field

— Make electrons move against wave EM field to loose
energy and amplify wave

— How?

To the end of this lecture 1s taken from H. Wiedemann,
USPAS, Jan 19-24, 2004, College of William and Mary
slides 293-313

* Thomas Jefferson National Accelerator Facili \
.geffegon Lab ¥ @
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%7

@JSA



&

energy gain/loss of electron from/to EM field

AW = —eJ.E_L}dE' = —eJ.TffL)dr =0
because Tﬁlf;

how do we get better coupling ?

need particle motion in the direction of electric field from EM wave

g E undulator
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Trajectory
d>x _ _eBy d ...
41 o mey g (‘OkaZ
d’z _ | eBo dx . ..
el tore coskpz
dx K _:
2 = —cB& sink,z
dr B Y P @
d: - K2 2
E =4cBl1 - SIN“ K2
ds B( 2y ? P )

x(1) = a cos(kpcPrt)
z(t) = cPt + é—kp a? sin(2kpcPr)

_geféZon Lab

USPAS Accelerator Physics June 2016
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Energy Transfer @

AW = —eI vwE df = —eJ‘ [c% Sin(kus) :||:ErL.D COS(kLS — o+ (pg> :|dr

€CKEYL . J‘ {sm[ (kL +k,)s—ot+ (pg ]

— sml:(kL —k qu + (pg ]}dr

get continuous energy transfer if ‘1. = (Z(L + ku)T — @1+ Qo =const.

dv. ds ook
e (k) o~ 0= (kL+ku)ﬁ(1 4.#) ke
condition for continuous energy fransfer

) o iy =2 (144K7)

ku ~

Thomas Jefferson National Accelerator Facili
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Gain/loss per unit path length (%5

d dw ecKE_
A L —_ = 5111[(k -|—k)5—wLI+q)g:|
ds cdt  mc? 2ymc? u

where s = cif + 5111(2;7{ cf)

' k K* ek
define n = — and K,
8y~k, k. mc**

xL,0

and the energy gain becomes

KK
d—y - = ui{ﬁ [JD(”) o J'l (I‘[)] Silll: (kL T ku>§ - er + Q)D]

dS
the phase varies slowly for 1
particles off the resonance energy }"f = ?KQ)
a e k,
5 :]{u(l—?) :2y1_ Ay where Ay =7y -y,
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Pendulum Equation

dAy dy dy ﬂ KK

S o S e () = S ()] sin'P
211 ﬁ’ !ILE.K
11 - 2}’_:% - 2 [Jo(ﬂ) Ji(n)] sl
Pendulum equation d° + 0O24nVV =
ds? L

-lf

k
- 2 . 11
with QL —

L

Thomas Jefferson National Accelerator Facility
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Gain

gain of laser field: AW, = —mc?Ay

stored energy in laser field W, = —EOEZ V

gain of laser field per electron
me*y

ATV 2
L " !
Gi = 5 = B A =~ AT
ek K“ n AY
or for all electrons (G = — b [Jg(!]) Jq (17)12 @)
F[}IH{ Q
r L

where 71, is the electron density

the average variation of (A\l'') can be calculated from the phase equation

Thomas Jefferson National Accelerator Facili
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Gain Curve

@@

( ‘:.11111

TelK2iN A2 1
. ' u b
FEL gain per pass G = — — ——[Jo(n) — Ji(m1*
degmc y:
2nN. k Kz
: L u L L
with  w= = (}’o -7) end N=4o
gain curve ( IS ‘TG
for finite gain: Ay = 0
e T N e
adjust beam energy . ! S Ay
slightly higher than +
resonance ene.r‘gy i
1L
_ Gn
laser energy 7 = W e n number of passes
Thomas Jefferson National Accelerator Facility
‘!effgon Lab USPAS Accelerator Physics June 2016
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Phase Space Motion @

Pendulum equation dl—f + _Q-’L- sinV = 0 ‘ P/ andintegrate
12

—T"2 — Q2 cos' T =const

energy spread

beam

G

separatrices

o o4
;

no net energy transfer |

: Thomas Jefferson National Accelerator Facili
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&

energy spread

A mphase/
\ANTANTf s

beam

<@

separatrices

p

laser

for yo > v, @ energy transfer to laser field |

5 Thomas Jefferson National Accelerator Facili
.geffe?son Lab ¥ @ @JSA

USPAS Accelerator Physics June 2016



.geferm Lab

FEL Schematically

radiation field

Dot A A A A A N P i
/ \vf FEEETAwRWETLE \VI \
undulator

deflection magnets
glectron beam

Thomas Jefferson National Accelerator Facility
USPAS Accelerator Physics June 2016

@



Electron Motion @

velocity of wave: ¢

average drift velocity of electron: 3 = B(l — fz )
A A
time for electron o travel one period: 7 = — = —
(1ﬁ (,8(1_ K-. )
4y~
A,C

distance wave propagates in fime t: §, — -
cﬁ(l— S )

@ s ’{u - 1 . K2 . - ;tu . 1
5s = _A = /IH[E(ML j)—l]m (1+1K2)

4y = Zyz

EM wave propagates one wavelength
ahead of electron per period

Thomas Jefferson National Accelerator Facility @ @_]SA
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Dynamics @
N\, x ’\ AAYAAY
i
/\J/\'ﬂ"u' AVAWAY N\ Rl,ﬁu; ;
i / i “ﬁjw\/
3 \LU \/\ /
HI l_;_ electron trajectory

-0

electron move constantly against external field

- Thomas Jefferson National Accelerator Facili
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Energy Recovered FEL

red ek wlediroms

aptical

#lackron Baam Aty
MmirTisr

-"'='==J'='="==-" SULLLL

7

Lbaad 11
dump
REUrLE w g orvl u Eing vaigglar for convarsian
stocherator essentlal for of electron energy
recysling sleckron erErgy inke ligght

Thomas Jefferson National Accelerator Facility
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Jefterson Lab IR DEMO FEL

Neil, G. R., et. al, Physical Review Letters, 84, 622 (2000)
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IR FEL Upgrade

g“ 7~ 2 ff’
P !%f{"
pla s Fis
% T
< ﬂ;{?f"’ .
~ <>
-~ “‘ » £
> {’f/‘
£z ,
- @ o NS il
L ", - i s 2>
Q‘B/’}y 5 ; 5
> | Power (kW) I
4 4

z
I~ .=
: |/ R 5
=]
e~ 2 e 2 2
L4
.
’
,
1 . 1
,
0 0
0.2 0.3 0.4 0.5 0.6 0.7
Wavelength(um)

Thomas Jefferson National Accelerator Facili
_geféZon Lab ¥ @ @JSA

USPAS Accelerator Physics June 2016



Optical Klystron

energy spread

W
W AN AN AN
YUANYATAT e

this works, but is not very efficient
bunched beam would be better

TSN NT N5

VYN \ \ \ phase
\_/ \_/

I i

Thomas Jefferson National Accelerator Facility
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tE

ir
beam

7NN phose

Beam Bunching
ANVIA

it:

>
D)
WVA

[[— A18391'—
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&

FEL action results in a bunched beam

but the bunches are not at the right point

cnergy spread

2, separatrices
BEET

| | | |

we need bunches here

phase

electron
beam

need time delay section

' Thomas Jefferson National Accelerator Facili
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mirror

Add Time Delay!

mirror

electron
beam

.geffegon Lab

NENENENEIE < A A4

| + | + | + v | v ¥ Y Y v L L ‘* | ¥ +

energy modulator ~ TiMme delay amplifier
section

Thomas Jefferson National Accelerator Facility
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SASE @

FEL works only for wavelength where mirrors exist

mostly visible, IR, FIR and microwaves

how about an x-ray free electron laser ?

amplification can occur only in one pass |

it can work |

Thomas Jefferson National Accelerator Facili
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.geffegon Lab

53 micron SASE

0.5 —
0.4 —
3 |
S
E. 0.3 -
.g |
E 0.2 —
2 |
0.1 -
0.0

1 11 21
number of undulator periods (77 mm each)
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How it Works

consider bunch

there is always a density fluctuation
fluctuation acts like a bunch, emitting coherent radiation
coherent radiation propagates faster than electrons

field acts back on bunch generating periodic energy variation
energy variation fransforms into bunching at desired wavelength

generating even more radiation growing exponentially
need long undulator: ~ 100 m (SLAC)

for 1A radiation: need electron energy about 15 GeV

need high quality, high intensity, low emittance beam

Thomas Jefferson National Accelerator Facility @ g_jSA
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SASE FEL

.getf/er?on Lab
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XFEL 1.3 GHz Cavities

.geffe‘gon Lab
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XFEL Undulator
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LCLS Undulator
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