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Introduction @@@

¢+ Courant-Snyder representation for one-dimensional
betatron motion

® Simple relations between Twiss parameters, eigen-vectors and
bilinear form for the particle ellipsoid

® Symplecticity = 2x2 — 1 = 3 parameters
* From uncoupled to strongly coupled motion by design

® “Moebius Twist Accelerator” to create round beams (Cornell)
® |onization cooling channel for Neutrino Factory and Muon Collider

® Vertex to plane adapter for electron cooling (Fermilab)
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Two dimensional coupled betatron motion @@

+ Symplecticity = 4x4 — 6 = 10 parameters
® Effective parameterization in terms of generalized Twiss functions

* Shortcomings of the existing representations

® Edwards and Teng, Fermilab (1973)

® Ambiguity of the rotation angle

® Physical meaning of the betatron phase advance?

® G. Ripken, et al., DESY (1987)

#® Oriented for circular accelerators

® |Incomplete parametrization (one needs 10 independent parameters to
fully describe 2D betatron motion)
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Unresolved issues for both parametrizations 5@@@

' Quest for versatile representation conveniently
describing both storage rings and transfer lines

¢+ 2D emittances - how are they related to the 4D
beam emittance?

' How to determine the beam emittances and the
generalized Twiss parameters from the particle
beam ellipsoid (bilinear form), and from the second-
order moments of the particle distribution?
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Equations of Motion and Symplecticity Condition g@ﬁ@

<* Two-dimensional linear motion
" 2 1 ' '
X +<KX +k)x+(N _ER )y—Ry =0 ,

y"+(K,? —k)y+(N +%R’)x+ RX' = 0

K., =eB,,/Pc -dipole

k =eG/Pc - quadrupole
N =eG, / Pc - skew-quadrupole
R=eB,/Pc - longitudinal magnetic field
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Hamiltonian formulation - equations of motion @

dx -
— = UHx
ds
. . . i R?2 i
¢ Hamiltonian matrix: KZ+k+— 0 N ~R/2
4
H - 0 1 Rz 0
N R/2 K,”—k+ b0
| -R/2 0 0 1
¢ Unit symplectic matrix : ) .
0 1 0 0 )
U =-
y_|L 0 0o .
o 0 0 1 UU:'
0 0 -1 0 v =1
— ..!Effgon Lab s Thomas Jefferson National Accelerator Facility
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Hamiltonian formulation - equations of motion @@@

¢ Canonical variables

., R
px = X _Ey’
. R =¢eB, /Pc - longitudinal magnetic field
p, =Yy + EX'
¢+ Relation between geometrical and canonical variables
x=Rx |,
where
[ X | [ X ] 1 0 0 O]
.| P 0, 0 1 -R/2 0
X = . X = . R=
y y o 0 1 0] |
123 10, | R/2 0 0 1

A ‘cap’ denotes transfer matrices and vectors related to the canonical variables.
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Hamiltonian formulation - equations of motion g@ﬁ@

“*Lagrange invariant

diero o\ dX' .~ ... dX, .1 oAt .
— X, Ux, )]=—2Ux,+x, U—2=x, H'U'Ux, +x, UUHx, =0
dS(l 2) ds 2 1 ds 1 2 1 2 :

A Tern .
x, Ux, =Inv

¢ Transfer matrix for canonical variables
% = M(0, 5)%,

¢ Symplecticity condition
%, UX, = X, M(0,s)" UM(0,5)%, =inv

¢ The above equation is satisfied for any x
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Hamiltonian formulation - Sympecticity

M(0,s)" UM(0,s) = U

+ Six independent equations — matrix M (0,s)T UM (0,s) is
antisymmetric = only 10 out of 16 elements of the transfer matrix

are independent
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Eigen-vectors @@@

My, =A%, , i=1,2,34

¢ For any two eigen-vectors the symplecticity condition yields

0=4,. UMY, -4,v,)=Mv,) UMV, -2 %, UL¥, =(1-2 .4, " Uy,

¢ The eigen-values always appear in two reciprocal pairs

» For stable betatron motion
e [4]=1 and 4, # %1

e the four eigen-values split into two complex conjugate pairs:
A4, 1=1,2

¢+ Four eigen-vectors — two complex conjugate pairs: v,,v,, /=1, 2.
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Eigen-vectors

¢ Orthogonality conditions:
v, Uv, =0,
v, Uv, 20,
ViUV, =0, ifi=]

» Top two expressions are purely imaginary

(WU@.)*=(WU%F%.*U*%.=—%.*U%. o 1=1,2.
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Eigen-vectors

» Eigen-vector normalization

VUV, =21, V, UV, =2
v, UV, =0 , ¥,/Uv,=0 |,
v, Uv, =0 , ¥,7Uv,=0
A2x4x2 — 6 = 10 (8 scalars and 2 initial phases to

parameterize eigen-vectors)
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Eigen-vectors and Particle Ellipsoid in 4D Space @

“»Particle position/angle vector at the beginning of the lattice
% = Re(Ae ™9, + Ae ™7,
where, A, A, y4 and s , are the betatron amplitudes and phases.
“*Let us introduce the following real matrix:
V= [el',—el", ez',—ez"}
¢ V is a symplectic matrix (a direct consequence of eigen-vector

orthogonality):

AV'UV=U

— ,!effegon Lab s Thomas Jefferson National Accelerator Facility I ——

Operated by JSA for the U.S. Department of Energy Lecture 7 — Coupled Betatron Motion | USPAS, Fort Collins, CO, June 10-21, 2013 14



Eigen-vectors and Particle Ellipsoid in 4D Space @

Viuv=U
¢ matrix V symplecticity yields a useful identity for the inverse of V:
A Vi=-UV'U
**Multi-particle beam emittance - an ensemble of particles,
whose motion is confined to a 4D ellipsoid. A 3D surface of

this ellipsoid, determined by particles with extreme betatron

amplitudes can be described in terms of a bilinear form

x=1.

I

~T
X
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Eigen-vectors and Particle Ellipsoid in 4D Space @

+ Using matrix V one can express a position/angle vector as follows:

X =VAE
where
‘A 0 0 0] _co_swlcosws |
N 0 A 0 0 ‘- —smz//lc?osy/3
“l0 0 A 0 co_s;uzsmc,//3
—siny,siny,
0 0 0 A - -

 the third parameter ys is introduced, so that the vector &€
would describe a 3D sphere with a unit radius

ge=1 , g=(Vva)'s

v(va)@a)y's=1 = [ E-uvAatAaviUT
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Beam emittance 4-D

+ Matrix E can be diagonalized as follows
VIEV=ATA"=ZE
+ The symplectic transform v

» reduces matrix Z to its diagonal form

»~ 4D volume of the ellipsoid remains unchanged, since
detV =1

¢ In the new coordinates particle beam ellipsoid can be written as:

—_1 2 =1 12 = g2 = 12
X+ EL P +ERY T +ELP, =1
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Beam emittance 4-D @

¢ 4D beam emittance (ellipsoid volume) can be expressed as follows:

Eip T T = =
*511*5'22:*’335214 \/det(E,) \ det(E)

11 1 _(AA)

1 2 2
E4p = 616 = = =~ , g=~A
A/ det(E)
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Beam emittance 4-D

&

+ Knowing beam emittances and the eigen-vectors (matrix V), the

beam ellipsoid can be described in the following compact form

T A
x=1

E

X

/e, 0 0 0
0 1lg 0 0 |.

b

0
0

0
0

1/ e,
0

0

1/¢, |
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Second order moments of the particle distribution @@@

¢ Gaussian distribution for 2D coupled betatron motion

1 ( 1. T_A)
exp| ——x Ex
Artee, 2

¢ Second order moments of the distribution

TX)=7

== RN 112\
X, = %X :jxixjf(x)dx4: jxx exp| — =x'Ex [dX*
47z £E, 2
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Beam emittance 4-D @

+ Applying coordinate transformation, y = V%, (matrix £ is reduced to its

diagonal form) makes the above integration trivial. The final result is :

e, 0 0 0]
c_ol0 & 0 0,

0 0 g O

0 0 0 ¢!

¢+ One can prove by direct substitution that

|X == |
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Beam emittance 4-D @

“*How to find the beam emittances and the eigen-vectors if

one knows X or £ ?
¢ The following characteristic equation:
det(E-iAU)=0
has 4 roots: 4, =-1,=1/¢ and A =-1, =1/¢,
» Proof:

det(E-i2 U)=det(UVE'VTU" i1 U)= det(&' -i2 UV UVU) =

det(&' —i1U) = [iz—ﬂf}[iz—fj ~ 0

€ &
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Beam emittance 4-D @

¢ Then, the eigen-vectors are determined by solving the following

equation:

» Proof:

~

— U\,\Ié’VTU_T as é"}U — U\A]é' =0

I

e Rewrite equation,

e multiply both sides of the above equation by vectors u, , /=1, 2

1 0
—1 0
u = , u, =
0 1
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Beam emittance 4-D 5@@

e and employing the following properties of the vectors u, , /=1, 2:

. A _ ’ 1
Vu, =v,, Uu, =—-iu, and Eu, =—u,.
€

e one obtains the desired equation: (é—LU]G, =0, /=1,2
&

¢ Similar equation holds for the second order moments
det(f(U+i/II)=O_ =1 , /=12

and
(XU +iglfy, =0 , /=1,2

¢ That yields another useful way of expressing the 4D emittance

Eip = EE) = Jdet(X) . ‘
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Twiss Functions for Coupled 2D Motion @@@

“*Single-particle phase-space trajectory along the beam orbit

X(s) = M(0,s)Rel\/, v, ™ +[£, 9,6 )

_ Re( 69, (s)e W) 4 /g_zgz(s)e—i(wwz(s))) |
¢ vectors v,(s)and v,(s)are the eigen-vectors at coordinate s

¢ vy and y» are the initial phases of betatron motion

¢ The phase terms e “*® and e™2®) are introduced to put the eigen-

vectors into the following standard form:
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Twiss Functions for Coupled 2D Motion @@@

\ P (8) NIHO A
_ iul(S)+0{1X(S) _ iu3(s)+a2X(S) plv2(s)
WO e | owe-] VRN
- U, (s) +ay, (S) RNE - lu,(s) +a,, (s)
i [B.,(s) | I B2y (8) |

~ v, and v, are selected out of two complex conjugate
pairs, so that uy ,us >0

*»Generalized Twiss functions (10 independent parameters):

¢ 111(S) and 1(s) are the phase advances of betatron motion.
¢ [1x(S), B1,(S), Pax(S) and Sy (S) are the beta-functions;

¢ a1(S), a1(S), aax(S) and oy (S) are the alpha-functions
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Twiss Functions for Coupled 2D Motion @@@

“*Introduced six real functions u4(s), ux(S), us(S), us(s), v4(S)
and v,(s) are determined from the symplecticity condition

¢ The first three conditions yield:
U1=1—U2, U4=1—U3 and Us = Usj

+ Then, one obtains

\/FU ﬂZXeiV2

_i(l—u +a, U+a,, .,

X

— €
~ \ ﬁlx A~ N ﬁZX)
e B, e ! Yo T By
- u+a, o - i(l—U)+a2y
ﬂly | ﬂZy

¢ For the uncoupled motion:
U=O, ﬁ1y=ﬁgx=0 and a1y=a2X=O
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Twiss Functions for Coupled 2D Motion @@@

“*Explicit solution for u(s)

2 2
2 2 2 2 Ax - A 2 2
- K, K, i\//{x K, {1+2y2(1—/cx K, )j

K, —K,

2 2
l-x,k,
where
1
Ax = K0 — K, Oy, ,

-1

Ay = K&y —Ky Oy,

o [Pa [P
ﬂlx ﬂZy

+ Time invariance (a positive displacement for a positive velocity)

Requires,u>0and (1-u)>0 = O<u<1.
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Twiss Functions for Coupled 2D Motion @@@

“*General solution for v4(s) and vy(s)

¢ Starting from the following expressions:

N Ax+i(Kx(1_u)+Kx u)
A —ilx,(1-u)-x,"u)
eV = @itv2—v2) _ Ax+i(Kx(1_u)_ xlu))
)

¢ one can get explicit solutions for vy and 1x»:
1
v, =Nrx +—(v+ —v_) ,
2
1
v, =Mz + §(V+ +v. )
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Twiss Functions for Coupled 2D Motion @@@

Vv, =n7z+%(v+ -v.)

v, =mzx +%(v+ +v_)

» v_and v, are determined modulo 2=

»~ which yields that v4 and 1, are determined modulo .

»~ The last feature is a consequence of the fact that the
mirror reflection does not affect /s and «'s itself, but it
changes relative signs of x and y components of the

eigen-vectors (change of v, and w by 7).
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Twiss Functions for Coupled 2D Motion

“*Choice of eigen-vectors
+ Weak coupling
» v, —relates mostly to the horizontal motion
» v, —relates mostly to the vertical motion.

¢ Strong coupling — the choice is arbitrary.

~ if one swaps two eigen-vectors it causes the following re-
definitions:

° b B, ,ny(_)ﬁ@
a4, O, a,>a,

° Vi—o>—V,, V-V, and u—>1—u.
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Beam sizes

a'x :\/81ﬂ1x +82ﬂ2x
a, :\/glﬂly +52182y

“*Ellipse equation

x> 2axy s y?
a’ aa, a/’

X

=1-a°’
y

¢+ Ellipse rotation parameter

xy) § X

. \/ﬂlxﬂly gl COsS Vl +\/ IBZXﬂZng COsS V2

a

W) e e
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Derivatives of Tunes and Beta-Functions @@@

“*A differential trajectory displacement related to the first
eigen-vector

X(s+ds) = x(s) + x'(s)ds = x(s) + ( P, () +§ yjds =

\/ZlReu /TU(S)J{_ i(1- U(;))zfjﬁx(s) Zmewl(w}ds]e u(ul(swl)}

“»+Alternatively, the particle position can be expressed through
the beta-functions at the new coordinate s + ds:

X(s +ds) = Re(\/,3, (s + ds)e s+t )

(Re[[m ; ,flx mdﬂ) I(u1(8)+w)]
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Derivatives of Tunes and Beta-Functions @@@

¢ For the first eigen-vector

dg,, ds
dsl =-2a,, +R\B, By, cosv, dsly =-2a,, —-R/By By, COSV, |
dﬂlzl—U_E &sinvl | d/ul_dvlz u +E By sinvl |
ds B, 2\pB, ds ds B, 2\5,
¢ For the second eigen-vector
ds dg,,
dszy =—20!2y - R\/ﬁZxﬂZy cosv, dS2 :_2a2x +R IBZXIBZV cosv,
duzzl—u+5 ’Bzxsinv dﬂz—dvzz u _R 'Bzysinv
ds B, 2\B, ds ds B, 2\B,
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Transfer Matrix in terms of Twiss Functions @@@

“*Using the definition of the eigen-vectors one can derive the
following identity

MV=VS |,

where the matrix S is defined as:

[ coSp,  Sin 0 0
S —sin g, COS 1, 0 0
0 0 CoS u, SIn u,
0 0  —sinu, CcOSu, |

“*That yields the expression for the transfer matrix in terms of
matrix , v

M = -VSUV'U
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Transfer Matrix in terms of Twiss Functions @@ﬁ@

M, = (1—u)cos u, +a,, Sin i, +UCOS 1, +a,, Sin p, |

M, =B, sin i+ By sin Hy

~

M, = %[an sin(z +v;)+ucos(s +11)] + ?x s, sin(e —v,) +(1-u)cos(s, —v, )]

I\7|14 = ﬂlxﬂly Sin(/ﬁ +V1)+\/ﬂ2xﬂ2y Sin(:uz _Vz) 5

A 1-u) +a? . u’+a? .
|\/|21:—( ) “sin u1, — Zsin g,
1x 2X

M, = (1—u)cOs s, +UCOS 1, —at,, SIN 1, —ax,, SiN 11,
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Transfer Matrix in terms of Twiss Functions @@@

0 |(1-U)er, —uey, |cos g4 +v;) —|eg,0q, +uld—u)[sin(z +14) .

) JBB,

[uazy - (1_ U)OtZX ] COS(,uZ - Vz) - [a2xa2y + u(l_ u)] Si n(:uz —V; )

A/ ﬂZxﬂZy

M,, = Ei[(l—ll) cos(z4 +14)—ay, sin(z +v1)]+\/§2[u cos(ty, —v,)— e, sin(1, —v, )|

~

= i, s li-laosi s e s v uosl o]

Msz = /leﬂly Sin(ﬂl _Vl)+\/ﬂ2x182y Sin(ﬂz +V2) >

~

M, =ucos s, +(1-U)cos u, +a,, Sin p, + ey, sin g,
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Transfer Matrix in terms of Twiss Functions @@ﬁ@

Mo, = By sinp + B, sinp,

o |~ Jcoss —i) |, e, +ull-U)fsin(z —v)

" BB,

[(1_u)a2x —Uazy]COS(,uQ +V2)_[a2xa2y +u(1—u)]sin(yz +V2)

1\ ﬁZXﬂZy |

_|_

~ B . B, .
M,, = |“>[ucos(s —v)—ay, sin(eg —w))+ |“2[1-u)cos(, +v,) ey, sin(z, +v,)] ,
1y 2y
. u? +a? 1-u) +a?
My =- “ Sinﬂl_( ) o sin e,
1y 2y

~

M,, =ucos u, +(1-u)cos u, —a,, Sin 1, —a,, sin g, .
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Beam ellipsoid in 4D space — bilinear form

2
u® +a,,

gZﬂZx

@-u) +ea, N

é‘n =
glﬂlx

Thomas Jefferson National Accelerator Facility
USPAS, Fort Collins, CO, June 10-21, 2013 39
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Beam ellipsoid in 4D space — bilinear form

—_ — Ay A,y
S TS T + >
& &,
A n a, o
= A _ Ty 2y
gy T Sz T + 5
&) &,
~ oA [a ay, +u(l-u JCOSV +[a (1-u)- alXuJSIn Vv,
=, = = +
13 31
& '\/ﬂlxﬂly

[szx“ +u(l-u)|cosv, +|a,, (1-u)- azyu]smv
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Beam ellipsoid in 4D space — bilinear form
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Second order moments in terms of Twiss functions @ﬁ@
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Summary @@@

**Relationships between the eigen-vectors, beam emittances and the
beam ellipsoid in 4D phase space

¢+ From the beam ellipsoid to the eigen-vectors (equivalence of both
pictures)

*New parametrization of eigen-vectors in terms of generalized Twiss
functions

¢+ Complete Weyl-like representation
» 10 independent parameters to fully describe the motion
» transport line ambiguities resolved

¢ Developed software based on this representation allows effective
analysis of coupled betatron motion for both circular accelerators
and transfer lines (OptiM).
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