

Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part I

Alex Bogacz, Geoff Krafft and Timofey Zolkin

Outline

- Introduction
- Equations of Motion, Symplecticity and Eigen-vectors
- Eigen-vectors and Particle Ellipsoid in 4D Phase Space
- Generalized Twiss Functions
- Derivatives of Tunes and Beta-Functions 4D Floque formulae
- Second order moments in terms of generalized Twiss functions
 - V. Lebedev, A. Bogacz, 'Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom', 2000, http://dx.doi.org/10.1088/1748-0221/5/10/P10010

Introduction

- Courant-Snyder representation for one-dimensional betatron motion
 - Simple relations between Twiss parameters, eigen-vectors and bilinear form for the particle ellipsoid
 - Symplecticity $\Rightarrow 2 \times 2 1 = 3$ parameters
- From uncoupled to strongly coupled motion by design
 - "Moebius Twist Accelerator" to create round beams (Cornell)
 - Ionization cooling channel for Neutrino Factory and Muon Collider
 - Vertex to plane adapter for electron cooling (Fermilab)

Lecture 7 – Coupled Betatron Motion I

Two dimensional coupled betatron motion

- Symplecticity $\Rightarrow 4 \times 4 6 = 10$ parameters
 - Effective parameterization in terms of generalized Twiss functions
- Shortcomings of the existing representations
 - Edwards and Teng, Fermilab (1973)
 - Ambiguity of the rotation angle
 - Physical meaning of the betatron phase advance?
 - G. Ripken, et al., DESY (1987)
 - Oriented for circular accelerators
 - Incomplete parametrization (one needs 10 independent parameters to fully describe 2D betatron motion)

Unresolved issues for both parametrizations

- Quest for versatile representation conveniently describing both storage rings and transfer lines
- 2D emittances how are they related to the 4D beam emittance?
- How to determine the beam emittances and the generalized Twiss parameters from the particle beam ellipsoid (bilinear form), and from the secondorder moments of the particle distribution?

Equations of Motion and Symplecticity Condition

❖Two-dimensional linear motion

$$x'' + (K_x^2 + k)x + (N - \frac{1}{2}R')y - Ry' = 0 ,$$

$$y'' + (K_y^2 - k)y + (N + \frac{1}{2}R')x + Rx' = 0 .$$

$$K_{x,y} = eB_{y,x} / Pc$$
 - dipole

$$k = eG/Pc$$
 - quadrupole

$$N = eG_s / Pc$$
 - skew-quadrupole

$$R = eB_s / Pc$$
 - longitudinal magnetic field

Hamiltonian formulation - equations of motion

$$\frac{d\hat{\mathbf{x}}}{ds} = \mathbf{U}\mathbf{H}\hat{\mathbf{x}}$$

◆ Hamiltonian matrix:

$$\mathbf{H} = \begin{bmatrix} K_x^2 + k + \frac{R^2}{4} & 0 & N & -R/2 \\ 0 & 1 & R/2 & 0 \\ N & R/2 & K_y^2 - k + \frac{R^2}{4} & 0 \\ -R/2 & 0 & 0 & 1 \end{bmatrix}$$

Unit symplectic matrix :

$$\mathbf{U} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \qquad \mathbf{U}^{T} = -\mathbf{U}$$

$$\mathbf{U}\mathbf{U} = -\mathbf{I}$$

$$\mathbf{U}\mathbf{U}^{T} = \mathbf{I}$$

Hamiltonian formulation - equations of motion

Canonical variables

$$p_x = x' - \frac{R}{2}y,$$

$$R = eB_s / Pc \quad \text{- longitudinal magnetic field}$$

$$p_y = y' + \frac{R}{2}x.$$

Relation between geometrical and canonical variables

$$\hat{\mathbf{x}} = \mathbf{R}\mathbf{x}$$

where

$$\hat{\mathbf{x}} = \begin{bmatrix} x \\ p_x \\ y \\ p_y \end{bmatrix} , \quad \mathbf{x} = \begin{bmatrix} x \\ \theta_x \\ y \\ \theta_y \end{bmatrix} , \quad \mathbf{R} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -R/2 & 0 \\ 0 & 0 & 1 & 0 \\ R/2 & 0 & 0 & 1 \end{bmatrix} ,$$

A 'cap' denotes transfer matrices and vectors related to the canonical variables.

Hamiltonian formulation - equations of motion

Lagrange invariant

$$\frac{d}{ds}(\hat{\mathbf{x}}_1^T \mathbf{U} \hat{\mathbf{x}}_2) = \frac{d\hat{\mathbf{x}}_1^T}{ds} \mathbf{U} \hat{\mathbf{x}}_2 + \hat{\mathbf{x}}_1^T \mathbf{U} \frac{d\hat{\mathbf{x}}_2}{ds} = \hat{\mathbf{x}}_1^T \mathbf{H}^T \mathbf{U}^T \mathbf{U} \hat{\mathbf{x}}_2 + \hat{\mathbf{x}}_1^T \mathbf{U} \mathbf{U} \mathbf{H} \hat{\mathbf{x}}_2 = 0$$

$$\hat{\mathbf{x}}_1^T \mathbf{U} \hat{\mathbf{x}}_2 = \text{inv}$$

Transfer matrix for canonical variables

$$\hat{\mathbf{x}} = \hat{\mathbf{M}}(0, s)\hat{\mathbf{x}}_0$$

Symplecticity condition

$$\hat{\mathbf{x}}_0^T \mathbf{U} \hat{\mathbf{x}}_0 = \hat{\mathbf{x}}_0^T \hat{\mathbf{M}} (0, s)^T \mathbf{U} \hat{\mathbf{M}} (0, s) \hat{\mathbf{x}}_0 = \text{inv}$$

The above equation is satisfied for any x̂

Hamiltonian formulation - Sympecticity

$$\hat{\mathbf{M}}(0,s)^T \mathbf{U}\hat{\mathbf{M}}(0,s) = \mathbf{U}$$

• Six independent equations – matrix $\hat{\mathbf{M}}(0,s)^T \mathbf{U} \hat{\mathbf{M}}(0,s)$ is antisymmetric \Rightarrow only 10 out of 16 elements of the transfer matrix are independent

Eigen-vectors

$$\hat{\mathbf{M}}\hat{\mathbf{v}}_{i} = \lambda_{i}\hat{\mathbf{v}}_{i} , \qquad i = 1, 2, 3, 4$$

For any two eigen-vectors the symplecticity condition yields

$$0 = \lambda_{j} \widehat{\mathbf{v}}_{j}^{T} \mathbf{U} (\widehat{\mathbf{M}} \widehat{\mathbf{v}}_{i} - \lambda_{i} \widehat{\mathbf{v}}_{i}) = (\widehat{\mathbf{M}} \widehat{\mathbf{v}}_{j})^{T} \mathbf{U} \widehat{\mathbf{M}} \widehat{\mathbf{v}}_{i} - \lambda_{j} \widehat{\mathbf{v}}_{j}^{T} \mathbf{U} \lambda_{i} \widehat{\mathbf{v}}_{i} = (1 - \lambda_{j} \lambda_{i}) \widehat{\mathbf{v}}_{j}^{T} \mathbf{U} \widehat{\mathbf{v}}_{i}$$

- The eigen-values always appear in two reciprocal pairs
 - For stable betatron motion
 - $|\lambda_i| = 1$ and $\lambda_i \neq \pm 1$
 - the four eigen-values split into two complex conjugate pairs: $\lambda_{l}, \lambda_{l}^{*}, l=1, 2$
- Four eigen-vectors two complex conjugate pairs: $\hat{\mathbf{v}}_{l}$, $\hat{\mathbf{v}}_{l}^{*}$, l = 1, 2.

Eigen-vectors

Orthogonality conditions:

$$\hat{\mathbf{v}}_{1}^{+}\mathbf{U}\hat{\mathbf{v}}_{1} \neq 0 ,$$

$$\hat{\mathbf{v}}_{2}^{+}\mathbf{U}\hat{\mathbf{v}}_{2} \neq 0 ,$$

$$\hat{\mathbf{v}}_{i}^{T}\mathbf{U}\hat{\mathbf{v}}_{i} = 0 , \quad \text{if } i \neq j,$$

♠ Top two expressions are purely imaginary

$$\left(\hat{\mathbf{v}}_l^+ \mathbf{U} \hat{\mathbf{v}}_l^+\right)^* = \left(\hat{\mathbf{v}}_l^+ \mathbf{U} \hat{\mathbf{v}}_l^+\right)^* = \hat{\mathbf{v}}_l^+ \mathbf{U}^+ \hat{\mathbf{v}}_l^- = -\hat{\mathbf{v}}_l^+ \mathbf{U} \hat{\mathbf{v}}_l^- \qquad , \quad l = 1, 2.$$

Eigen-vectors

Eigen-vector normalization

$$\mathbf{\hat{v}}_{1}^{+}\mathbf{U}\mathbf{\hat{v}}_{1} = -2i \quad , \quad \mathbf{\hat{v}}_{2}^{+}\mathbf{U}\mathbf{\hat{v}}_{2} = -2i \quad ,$$

$$\mathbf{\hat{v}}_{1}^{T}\mathbf{U}\mathbf{\hat{v}}_{1} = 0 \quad , \quad \mathbf{\hat{v}}_{2}^{T}\mathbf{U}\mathbf{\hat{v}}_{2} = 0 \quad ,$$

$$\mathbf{\hat{v}}_{2}^{T}\mathbf{U}\mathbf{\hat{v}}_{1} = 0 \quad , \quad \mathbf{\hat{v}}_{2}^{+}\mathbf{U}\mathbf{\hat{v}}_{1} = 0 \quad .$$

riangle 2 imes 4 imes 2 - 6 = 10 (8 scalars and 2 initial phases to parameterize eigen-vectors)

Eigen-vectors and Particle Ellipsoid in 4D Space

Particle position/angle vector at the beginning of the lattice

$$\hat{\mathbf{x}} = \operatorname{Re}\left(A_{1}e^{-i\psi_{1}}\hat{\mathbf{v}}_{1} + A_{2}e^{-i\psi_{2}}\hat{\mathbf{v}}_{2}\right)$$

where, A_1 , A_2 , ψ_1 and ψ_2 , are the betatron amplitudes and phases.

Let us introduce the following real matrix:

$$\hat{\mathbf{V}} = \begin{bmatrix} \hat{\mathbf{v}}_1', -\hat{\mathbf{v}}_1'', \hat{\mathbf{v}}_2', -\hat{\mathbf{v}}_2'' \end{bmatrix} \quad .$$

- $ightharpoonup \hat{\mathbf{V}}$ is a symplectic matrix (a direct consequence of eigen-vector orthogonality):
 - $\hat{\mathbf{V}}^T \mathbf{U} \hat{\mathbf{V}} = \mathbf{U}$

Eigen-vectors and Particle Ellipsoid in 4D Space

$$\hat{\mathbf{V}}^T \mathbf{U} \hat{\mathbf{V}} = \mathbf{U}$$

• matrix $\hat{\mathbf{v}}$ symplecticity yields a useful identity for the inverse of $\hat{\mathbf{v}}$:

$$\hat{\mathbf{V}}^{-1} = -\mathbf{U}\hat{\mathbf{V}}^T\mathbf{U}$$

Multi-particle beam emittance - an ensemble of particles, whose motion is confined to a 4D ellipsoid. A 3D surface of this ellipsoid, determined by particles with extreme betatron amplitudes can be described in terms of a bilinear form

$$\hat{\mathbf{x}}^T \hat{\mathbf{\Xi}} \hat{\mathbf{x}} = 1$$

Eigen-vectors and Particle Ellipsoid in 4D Space

ullet Using matrix $\hat{\mathbf{V}}$ one can express a position/angle vector as follows:

$$\hat{\mathbf{x}} = \hat{\mathbf{V}} \mathbf{A} \boldsymbol{\xi}$$

where

$$\mathbf{A} = \begin{bmatrix} A_1 & 0 & 0 & 0 \\ 0 & A_1 & 0 & 0 \\ 0 & 0 & A_2 & 0 \\ 0 & 0 & 0 & A_2 \end{bmatrix} , \quad \boldsymbol{\xi} = \begin{bmatrix} \cos \psi_1 \cos \psi_3 \\ -\sin \psi_1 \cos \psi_3 \\ \cos \psi_2 \sin \psi_3 \\ -\sin \psi_2 \sin \psi_3 \end{bmatrix} .$$

• the third parameter ψ_3 is introduced, so that the vector ξ would describe a 3D sphere with a unit radius

$$\boldsymbol{\xi}^{T}\boldsymbol{\xi} = 1 \qquad , \quad \boldsymbol{\xi} = (\hat{\mathbf{V}}\mathbf{A})^{-1}\hat{\mathbf{x}}$$

$$\hat{\mathbf{x}}^{T}((\hat{\mathbf{V}}\mathbf{A})^{-1})^{T}(\hat{\mathbf{V}}\mathbf{A})^{-1}\hat{\mathbf{x}} = 1 \qquad \Rightarrow \qquad \hat{\boldsymbol{\Xi}} = \mathbf{U}\hat{\mathbf{V}}\mathbf{A}^{-1}\mathbf{A}^{-1}\hat{\mathbf{V}}^{T}\mathbf{U}^{T}$$

◆ Matrix Ê can be diagonalized as follows

$$\hat{\mathbf{V}}^T \hat{\mathbf{\Xi}} \hat{\mathbf{V}} = \mathbf{A}^{-1} \mathbf{A}^{-1} \equiv \hat{\mathbf{\Xi}}'$$

- The symplectic transform ŷ

 - \blacktriangle 4D volume of the ellipsoid remains unchanged, since $\det \hat{\mathbf{V}} = 1$
- In the new coordinates particle beam ellipsoid can be written as:

$$\hat{\Xi}'_{11}x'^2 + \hat{\Xi}'_{22}p'^2_x + \hat{\Xi}'_{33}y'^2 + \hat{\Xi}'_{44}p'^2_y = 1$$

4D beam emittance (ellipsoid volume) can be expressed as follows:

$$\varepsilon_{4D} = \frac{1}{\sqrt{\hat{\Xi}'_{11}\hat{\Xi}'_{22}\hat{\Xi}'_{33}\hat{\Xi}'_{44}}} = \frac{1}{\sqrt{\det(\hat{\Xi}')}} = \frac{1}{\sqrt{\det(\hat{\Xi})}} = (A_1 A_2)^2$$

$$\varepsilon_{4D} = \varepsilon_1 \varepsilon_2 = \frac{1}{\sqrt{\det(\hat{\Xi})}}, \quad \varepsilon_1 = A_1^2, \quad \varepsilon_2 = A_2^2$$

• Knowing beam emittances and the eigen-vectors (matrix $\hat{\mathbf{v}}$), the beam ellipsoid can be described in the following compact form

$$\hat{\mathbf{x}}^T \hat{\mathbf{\Xi}} \hat{\mathbf{x}} = 1$$

$$\hat{\mathbf{\Xi}} = \mathbf{U}\hat{\mathbf{V}} \begin{bmatrix} 1/\varepsilon_1 & 0 & 0 & 0 \\ 0 & 1/\varepsilon_1 & 0 & 0 \\ 0 & 0 & 1/\varepsilon_2 & 0 \\ 0 & 0 & 0 & 1/\varepsilon_2 \end{bmatrix} \hat{\mathbf{V}}^T \mathbf{U}^T$$

19

Second order moments of the particle distribution

Gaussian distribution for 2D coupled betatron motion

$$f(\hat{\mathbf{x}}) = \frac{1}{4\pi^2 \varepsilon_1 \varepsilon_2} \exp\left(-\frac{1}{2}\hat{\mathbf{x}}^T \hat{\mathbf{\Xi}} \hat{\mathbf{x}}\right)$$

Second order moments of the distribution

$$\hat{X}_{ij} = \overline{\hat{x}_i \hat{x}_j} = \int \hat{x}_i \hat{x}_j f(\hat{\mathbf{x}}) d\hat{x}^4 = \frac{1}{4\pi^2 \varepsilon_1 \varepsilon_2} \int \hat{x}_i \hat{x}_j \exp\left(-\frac{1}{2} \hat{\mathbf{x}}^T \hat{\mathbf{\Xi}} \hat{\mathbf{x}}\right) d\hat{x}^4$$

• Applying coordinate transformation, $\hat{y} = \hat{V}^{-1}\hat{x}$, (matrix $\hat{\Xi}$ is reduced to its diagonal form) makes the above integration trivial. The final result is :

$$\hat{\mathbf{X}} = \hat{\mathbf{V}} \begin{bmatrix} \boldsymbol{\varepsilon}_1 & 0 & 0 & 0 \\ 0 & \boldsymbol{\varepsilon}_1 & 0 & 0 \\ 0 & 0 & \boldsymbol{\varepsilon}_2 & 0 \\ 0 & 0 & 0 & \boldsymbol{\varepsilon}_2 \end{bmatrix} \hat{\mathbf{V}}^T$$

One can prove by direct substitution that

$$\mathbf{\hat{X}}=\mathbf{\hat{\Xi}}^{-1}$$
 .

- \clubsuit How to find the beam emittances and the eigen-vectors if one knows $\hat{\mathbf{X}}$ or $\hat{\mathbf{\Xi}}$?
- The following characteristic equation:

$$\det(\hat{\mathbf{\Xi}} - i\lambda \mathbf{U}) = 0$$

has 4 roots: $\lambda_1 = -\lambda_2 = 1/\varepsilon_1$ and $\lambda_3 = -\lambda_4 = 1/\varepsilon_2$

♠ Proof:

$$\det(\hat{\mathbf{\Xi}} - i\lambda \mathbf{U}) = \det(\mathbf{U}\hat{\mathbf{V}}\hat{\mathbf{\Xi}}'\hat{\mathbf{V}}^T\mathbf{U}^T - i\lambda \mathbf{U}) = \det(\hat{\mathbf{\Xi}}' - i\lambda \mathbf{U}^T\hat{\mathbf{V}}^T\mathbf{U}\hat{\mathbf{V}}\mathbf{U}) =$$
$$\det(\hat{\mathbf{\Xi}}' - i\lambda \mathbf{U}) = \left(\frac{1}{\varepsilon_1^2} - \lambda^2\right)\left(\frac{1}{\varepsilon_2^2} - \lambda^2\right) = 0 .$$

Then, the eigen-vectors are determined by solving the following equation:

$$\left(\hat{\mathbf{\Xi}} - \frac{i}{\varepsilon_l} \mathbf{U}\right) \hat{\mathbf{v}}_l = 0$$

- Proof:
- Rewrite equation, $\hat{\mathbf{E}} = \mathbf{U}\hat{\mathbf{V}}\hat{\mathbf{E}}'\hat{\mathbf{V}}^T\mathbf{U}_{\underline{\mathbf{I}}}^T$ as $\hat{\mathbf{E}}\hat{\mathbf{V}}\mathbf{U} \mathbf{U}\hat{\mathbf{V}}\hat{\mathbf{E}}' = 0$
- multiply both sides of the above equation by vectors u, , I = 1, 2

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -i \\ 0 \\ 0 \end{bmatrix} \quad , \qquad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -i \end{bmatrix}$$

• and employing the following properties of the vectors \mathbf{u}_{l} , l = 1, 2:

$$\hat{\mathbf{V}}\mathbf{u}_{l} = \hat{\mathbf{v}}_{l}$$
, $\mathbf{U}\mathbf{u}_{l} = -i\mathbf{u}_{l}$ and $\mathbf{\Xi}'\mathbf{u}_{l} = \frac{1}{\varepsilon_{l}}\mathbf{u}_{l}$.

- one obtains the desired equation: $\left(\hat{\Xi} \frac{i}{\varepsilon_l}\mathbf{U}\right)\hat{\mathbf{v}}_l = 0$, l = 1, 2
- Similar equation holds for the second order moments

$$\det(\mathbf{\hat{X}U} + i\lambda \mathbf{I}) = 0 \quad \varepsilon_l = \lambda_l \quad , \quad l = 1, 2$$

and

$$(\hat{\mathbf{X}}\mathbf{U} + i\varepsilon_l \mathbf{I})\hat{\mathbf{v}}_l = 0$$
 , $l = 1, 2$

That yields another useful way of expressing the 4D emittance

$$\varepsilon_{4D} = \varepsilon_1 \varepsilon_2 = \sqrt{\det(\hat{\mathbf{X}})}$$
.

Single-particle phase-space trajectory along the beam orbit

$$\hat{\mathbf{x}}(s) = \hat{\mathbf{M}}(0, s) \operatorname{Re}\left(\sqrt{\varepsilon_1} \hat{\mathbf{v}}_1 e^{-i\psi_1} + \sqrt{\varepsilon_2} \hat{\mathbf{v}}_2 e^{-i\psi_2}\right)$$

$$= \operatorname{Re}\left(\sqrt{\varepsilon_1}\,\hat{\mathbf{v}}_1(s)e^{-i(\psi_1+\mu_1(s))} + \sqrt{\varepsilon_2}\,\hat{\mathbf{v}}_2(s)e^{-i(\psi_2+\mu_2(s))}\right) ,$$

- vectors $\hat{\mathbf{v}}_1(s)$ and $\hat{\mathbf{v}}_2(s)$ are the eigen-vectors at coordinate s
- ψ_1 and ψ_2 are the initial phases of betatron motion
- The phase terms $e^{-i\mu_1(s)}$ and $e^{-i\mu_2(s)}$ are introduced to put the eigenvectors into the following standard form:

$$\hat{\mathbf{v}}_{1}(s) = \begin{bmatrix}
\sqrt{\beta_{1x}(s)} \\
-\frac{iu_{1}(s) + \alpha_{1x}(s)}{\sqrt{\beta_{1x}(s)}} \\
\sqrt{\beta_{1y}(s)}e^{iv_{1}(s)} \\
-\frac{iu_{2}(s) + \alpha_{1y}(s)}{\sqrt{\beta_{1y}(s)}}e^{iv_{1}(s)}
\end{bmatrix}, \quad \hat{\mathbf{v}}_{2}(s) = \begin{bmatrix}
\sqrt{\beta_{2x}(s)}e^{iv_{2}(s)} \\
-\frac{iu_{3}(s) + \alpha_{2x}(s)}{\sqrt{\beta_{2x}(s)}}e^{iv_{2}(s)} \\
\sqrt{\beta_{2x}(s)} \\
-\frac{iu_{4}(s) + \alpha_{2y}(s)}{\sqrt{\beta_{2y}(s)}}
\end{bmatrix},$$

- $\hat{\mathbf{v}}_1$ and $\hat{\mathbf{v}}_2$ are selected out of two complex conjugate pairs, so that u_1 , $u_4 > 0$
- Generalized Twiss functions (10 independent parameters):
- $\mu_1(s)$ and $\mu_2(s)$ are the phase advances of betatron motion.
- $\beta_{1x}(s)$, $\beta_{1y}(s)$, $\beta_{2x}(s)$ and $\beta_{2y}(s)$ are the beta-functions;
- $\alpha_{1x}(s)$, $\alpha_{1y}(s)$, $\alpha_{2x}(s)$ and $\alpha_{2y}(s)$ are the alpha-functions

- ❖Introduced six real functions $u_1(s)$, $u_2(s)$, $u_3(s)$, $u_4(s)$, $v_1(s)$ and $v_2(s)$ are determined from the symplecticity condition
- The first three conditions yield:

$$u_1 = 1 - u_2$$
, $u_4 = 1 - u_3$ and $u_2 = u_3$

Then, one obtains

$$\hat{\mathbf{v}}_{1} = \begin{bmatrix} \sqrt{\beta_{1x}} \\ -\frac{i(1-u) + \alpha_{1x}}{\sqrt{\beta_{1y}}} \\ \sqrt{\beta_{1y}} e^{i\nu_{1}} \\ -\frac{iu + \alpha_{1y}}{\sqrt{\beta_{1y}}} e^{i\nu_{1}} \end{bmatrix} , \qquad \hat{\mathbf{v}}_{2} = \begin{bmatrix} \sqrt{\beta_{2x}} e^{i\nu_{2}} \\ -\frac{iu + \alpha_{2x}}{\sqrt{\beta_{2x}}} e^{i\nu_{2}} \\ \sqrt{\beta_{2y}} \\ -\frac{i(1-u) + \alpha_{2y}}{\sqrt{\beta_{2y}}} \end{bmatrix}$$

For the uncoupled motion:

$$u=0$$
, $\beta_{1y}=\beta_{2x}=0$ and $\alpha_{1y}=\alpha_{2x}=0$

 \star Explicit solution for u(s)

$$u = \frac{-\kappa_x^2 \kappa_y^2 \pm \sqrt{\kappa_x^2 \kappa_y^2 \left(1 + \frac{A_x^2 - A_y^2}{\kappa_x^2 - \kappa_y^2} \left(1 - \kappa_x^2 \kappa_y^2\right)\right)}}{1 - \kappa_x^2 \kappa_y^2}$$

where

$$A_{x} = \kappa_{x} \alpha_{1x} - \kappa_{x}^{-1} \alpha_{2x} ,$$

$$A_{y} = \kappa_{y} \alpha_{2y} - \kappa_{y}^{-1} \alpha_{1y} ,$$

$$\kappa_{x} = \sqrt{\frac{\beta_{2x}}{\beta_{1x}}}, \quad \kappa_{y} = \sqrt{\frac{\beta_{1y}}{\beta_{2y}}} .$$

Time invariance (a positive displacement for a positive velocity)

Requires, $u \ge 0$ and $(1 - u) \ge 0 \implies 0 < u < 1$.

- \bullet General solution for $v_1(s)$ and $v_2(s)$
- Starting from the following expressions:

$$e^{i\nu_{+}} \equiv e^{i(\nu_{2}+\nu_{2})} = \frac{A_{x} + i(\kappa_{x}(1-u) + \kappa_{x}^{-1}u)}{A_{y} - i(\kappa_{y}(1-u) - \kappa_{y}^{-1}u)} ,$$

$$e^{i\nu_{-}} \equiv e^{i(\nu_{2}-\nu_{2})} = \frac{A_{x} + i(\kappa_{x}(1-u) - \kappa_{x}^{-1}u)}{A_{y} + i(\kappa_{y}(1-u) - \kappa_{y}^{-1}u)} ,$$

• one can get explicit solutions for v_1 and v_2 :

$$v_{1} = n\pi + \frac{1}{2}(v_{+} - v_{-}) ,$$

$$v_{2} = m\pi + \frac{1}{2}(v_{+} + v_{-}) .$$

29

$$v_{1} = n\pi + \frac{1}{2}(v_{+} - v_{-}) ,$$

$$v_{2} = m\pi + \frac{1}{2}(v_{+} + v_{-}) .$$

- ν_{-} and ν_{+} are determined modulo 2π
- which yields that ν_1 and ν_2 are determined modulo π .
- The last feature is a consequence of the fact that the mirror reflection does not affect β 's and α 's itself, but it changes relative signs of x and y components of the eigen-vectors (change of ν_1 and ν_2 by π).

Choice of eigen-vectors

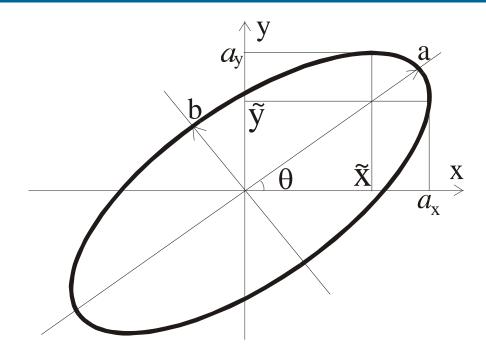
- Weak coupling
 - $\hat{\mathbf{v}}_1$ relates mostly to the horizontal motion
 - $\hat{\mathbf{v}}_2$ relates mostly to the vertical motion.
- Strong coupling the choice is arbitrary.
 - if one swaps two eigen-vectors it causes the following redefinitions:
 - $\beta_{1x} \leftrightarrow \beta_{2x}$, $\beta_{1y} \leftrightarrow \beta_{2y}$
 - $\alpha_{1x} \leftrightarrow \alpha_{2x}$, $\alpha_{1y} \leftrightarrow \alpha_{2y}$
 - $v_1 \rightarrow -v_2$, $v_2 \rightarrow -v_1$ and $u \rightarrow 1 u$.

Beam sizes

$$a_{x} = \sqrt{\varepsilon_{1}\beta_{1x} + \varepsilon_{2}\beta_{2x}}$$
$$a_{y} = \sqrt{\varepsilon_{1}\beta_{1y} + \varepsilon_{2}\beta_{2y}}$$

Ellipse equation

$$\frac{x^{2}}{a_{x}^{2}} - \frac{2\tilde{\alpha}xy}{a_{x}a_{y}} + \frac{y^{2}}{a_{y}^{2}} = 1 - \tilde{\alpha}^{2}$$



Ellipse rotation parameter

$$\widetilde{\alpha} \equiv \frac{\langle xy \rangle}{\sqrt{\langle x^2 \rangle \langle y^2 \rangle}} = \frac{\widetilde{y}}{a_y} = \frac{\widetilde{x}}{a_x} = \frac{\sqrt{\beta_{1x}\beta_{1y}}\varepsilon_1 \cos \nu_1 + \sqrt{\beta_{2x}\beta_{2y}}\varepsilon_2 \cos \nu_2}{\sqrt{\varepsilon_1\beta_{1x} + \varepsilon_2\beta_{2x}} \sqrt{\varepsilon_1\beta_{1y} + \varepsilon_2\beta_{2y}}}$$

Derivatives of Tunes and Beta-Functions

A differential trajectory displacement related to the first eigen-vector

$$x(s+ds) = x(s) + x'(s)ds = x(s) + \left(p_{x}(s) + \frac{R}{2}y\right)ds = \sqrt{\varepsilon_{1}} \operatorname{Re}\left(\sqrt{\beta_{1x}(s)} + \left[-\frac{i(1-u(s)) + \alpha_{1x}(s)}{\sqrt{\beta_{1x}(s)}} + \frac{R}{2}\sqrt{\beta_{1y}(s)} e^{i\nu_{1}(s)}\right]ds\right)e^{-i(\mu_{1}(s) + \psi_{1})}\right).$$

❖Alternatively, the particle position can be expressed through the beta-functions at the new coordinate s + ds:

$$x(s+ds) = \operatorname{Re}\left(\sqrt{\varepsilon_{1}\beta_{x}(s+ds)}e^{-i(\mu_{1}(s+ds)+\psi)}\right) =$$

$$\sqrt{\varepsilon_{1}}\operatorname{Re}\left(\left(\sqrt{\beta_{1x}(s)} + \frac{d\beta_{1x}}{2\sqrt{\beta_{1x}(s)}} - i\sqrt{\beta_{1x}(s)}d\mu\right)e^{-i(\mu_{1}(s)+\psi)}\right).$$

Derivatives of Tunes and Beta-Functions

For the first eigen-vector

$$\frac{d\beta_{1x}}{ds} = -2\alpha_{1x} + R\sqrt{\beta_{1x}\beta_{1y}}\cos v_1 \quad ,$$

$$\frac{d\mu_1}{ds} = \frac{1-u}{\beta_{1x}} - \frac{R}{2} \sqrt{\frac{\beta_{1y}}{\beta_{1x}}} \sin \nu_1 \quad ,$$

$$\frac{d\beta_{1y}}{ds} = -2\alpha_{1y} - R\sqrt{\beta_{1x}\beta_{1y}}\cos\nu_1 \quad ,$$

$$\frac{d\mu_1}{ds} - \frac{d\nu_1}{ds} = \frac{u}{\beta_{1y}} + \frac{R}{2} \sqrt{\frac{\beta_{1x}}{\beta_{1y}}} \sin \nu_1 \quad ,$$

For the second eigen-vector

$$\frac{d\beta_{2y}}{ds} = -2\alpha_{2y} - R\sqrt{\beta_{2x}\beta_{2y}}\cos\nu_2 \quad ,$$

$$\frac{d\mu_2}{ds} = \frac{1-u}{\beta_{2y}} + \frac{R}{2} \sqrt{\frac{\beta_{2x}}{\beta_{2y}}} \sin \nu_2 \quad ,$$

$$\frac{d\beta_{2x}}{ds} = -2\alpha_{2x} + R\sqrt{\beta_{2x}\beta_{2y}}\cos\nu_2 \quad ,$$

$$\frac{d\mu_2}{ds} - \frac{dv_2}{ds} = \frac{u}{\beta_{2x}} - \frac{R}{2} \sqrt{\frac{\beta_{2y}}{\beta_{2x}}} \sin v_2 \quad .$$

Using the definition of the eigen-vectors one can derive the following identity

$$\hat{\mathbf{M}}\,\hat{\mathbf{V}} = \hat{\mathbf{V}}\,\mathbf{S} \quad ,$$

where the matrix **S** is defined as:

$$\mathbf{S} = \begin{bmatrix} \cos \mu_1 & \sin \mu_1 & 0 & 0 \\ -\sin \mu_1 & \cos \mu_1 & 0 & 0 \\ 0 & 0 & \cos \mu_2 & \sin \mu_2 \\ 0 & 0 & -\sin \mu_2 & \cos \mu_2 \end{bmatrix} .$$

That yields the expression for the transfer matrix in terms of matrix , \hat{\mathbf{v}}

$$\hat{\mathbf{M}} = -\hat{\mathbf{V}}\mathbf{S}\mathbf{U}\hat{\mathbf{V}}^{\mathrm{T}}\mathbf{U} \qquad .$$

$$\hat{M}_{11} = (1 - u)\cos \mu_1 + \alpha_{1x}\sin \mu_1 + u\cos \mu_2 + \alpha_{2x}\sin \mu_2 ,$$

$$\hat{M}_{12} = \beta_{1x} \sin \mu_1 + \beta_{2x} \sin \mu_2 ,$$

$$\hat{M}_{13} = \sqrt{\frac{\beta_{1x}}{\beta_{1y}}} \left[\alpha_{1y} \sin(\mu_1 + \nu_1) + u \cos(\mu_1 + \nu_1) \right] + \sqrt{\frac{\beta_{2x}}{\beta_{2y}}} \left[\alpha_{2y} \sin(\mu_2 - \nu_2) + (1 - u) \cos(\mu_2 - \nu_2) \right] ,$$

$$\hat{M}_{14} = \sqrt{\beta_{1x}\beta_{1y}} \sin(\mu_1 + \nu_1) + \sqrt{\beta_{2x}\beta_{2y}} \sin(\mu_2 - \nu_2) ,$$

$$\hat{M}_{21} = -\frac{(1-u)^2 + \alpha_{1x}^2}{\beta_{1x}} \sin \mu_1 - \frac{u^2 + \alpha_{2x}^2}{\beta_{2x}} \sin \mu_2 ,$$

$$\hat{M}_{22} = (1 - u)\cos \mu_1 + u\cos \mu_2 - \alpha_{1x}\sin \mu_1 - \alpha_{2x}\sin \mu_2 ,$$

$$\hat{M}_{23} = \frac{\left[(1-u)\alpha_{1y} - u\alpha_{1x} \right] \cos(\mu_1 + \nu_1) - \left[\alpha_{1x}\alpha_{1y} + u(1-u)\right] \sin(\mu_1 + \nu_1)}{\sqrt{\beta_{1x}\beta_{1y}}} + \frac{\left[u\alpha_{2y} - (1-u)\alpha_{2x} \right] \cos(\mu_2 - \nu_2) - \left[\alpha_{2x}\alpha_{2y} + u(1-u)\right] \sin(\mu_2 - \nu_2)}{\sqrt{\beta_{2x}\beta_{2y}}},$$

$$\hat{M}_{24} = \sqrt{\frac{\beta_{1y}}{\beta_{1x}}} [(1-u)\cos(\mu_1 + \nu_1) - \alpha_{1x}\sin(\mu_1 + \nu_1)] + \sqrt{\frac{\beta_{2y}}{\beta_{2x}}} [u\cos(\mu_2 - \nu_2) - \alpha_{2x}\sin(\mu_2 - \nu_2)] ,$$

$$\hat{M}_{31} = \sqrt{\frac{\beta_{1y}}{\beta_{1x}}} \left[\alpha_{1x} \sin(\mu_1 - \nu_1) + (1 - u)\cos(\mu_1 - \nu_1) \right] + \sqrt{\frac{\beta_{2y}}{\beta_{2x}}} \left[\alpha_{2x} \sin(\mu_2 + \nu_2) + u\cos(\mu_2 + \nu_2) \right] ,$$

$$\hat{M}_{32} = \sqrt{\beta_{1x}\beta_{1y}} \sin(\mu_1 - \nu_1) + \sqrt{\beta_{2x}\beta_{2y}} \sin(\mu_2 + \nu_2) ,$$

$$\hat{M}_{33} = u \cos \mu_1 + (1 - u) \cos \mu_2 + \alpha_{2y} \sin \mu_2 + \alpha_{1y} \sin \mu_1 ,$$

$$\hat{M}_{34} = \beta_{1y} \sin \mu_1 + \beta_{2y} \sin \mu_2 ,$$

$$\hat{M}_{41} = \frac{\left[\alpha_{1x}u - (1-u)\alpha_{1y}\right]\cos(\mu_{1} - \nu_{1}) - \left[\alpha_{1x}\alpha_{1y} + u(1-u)\right]\sin(\mu_{1} - \nu_{1})}{\sqrt{\beta_{1x}\beta_{1y}}} + \frac{\left[(1-u)\alpha_{2x} - u\alpha_{2y}\right]\cos(\mu_{2} + \nu_{2}) - \left[\alpha_{2x}\alpha_{2y} + u(1-u)\right]\sin(\mu_{2} + \nu_{2})}{\sqrt{\beta_{2x}\beta_{2y}}}$$

$$\hat{M}_{42} = \sqrt{\frac{\beta_{1x}}{\beta_{1y}}} \left[u \cos(\mu_1 - \nu_1) - \alpha_{1y} \sin(\mu_1 - \nu_1) \right] + \sqrt{\frac{\beta_{2x}}{\beta_{2y}}} \left[(1 - u) \cos(\mu_2 + \nu_2) - \alpha_{2y} \sin(\mu_2 + \nu_2) \right],$$

$$\hat{M}_{43} = -\frac{u^2 + \alpha_{1y}^2}{\beta_{1y}} \sin \mu_1 - \frac{(1-u)^2 + \alpha_{2y}^2}{\beta_{2y}} \sin \mu_2 ,$$

$$\hat{M}_{44} = u \cos \mu_1 + (1 - u) \cos \mu_2 - \alpha_{1y} \sin \mu_1 - \alpha_{2y} \sin \mu_2 .$$

Beam ellipsoid in 4D space – bilinear form

$$\hat{\Xi}_{11} = \frac{(1-u)^2 + \alpha_{1x}^2}{\varepsilon_1 \beta_{1x}} + \frac{u^2 + \alpha_{2x}^2}{\varepsilon_2 \beta_{2x}} ,$$

$$\hat{\Xi}_{22} = \frac{\beta_{1x}}{\mathcal{E}_1} + \frac{\beta_{2x}}{\mathcal{E}_2} \quad ,$$

$$\hat{\Xi}_{33} = \frac{u^2 + \alpha_{1y}^2}{\varepsilon_1 \beta_{1y}} + \frac{(1-u)^2 + \alpha_{2y}^2}{\varepsilon_2 \beta_{2y}},$$

$$\hat{\Xi}_{44} = \frac{\beta_{1y}}{\mathcal{E}_1} + \frac{\beta_{2y}}{\mathcal{E}_2} \quad ,$$

Beam ellipsoid in 4D space – bilinear form

$$\hat{\Xi}_{12} = \hat{\Xi}_{21} = \frac{\alpha_{1x}}{\varepsilon_1} + \frac{\alpha_{2x}}{\varepsilon_2} \quad ,$$

$$\hat{\Xi}_{34} = \hat{\Xi}_{43} = \frac{\alpha_{1y}}{\varepsilon_1} + \frac{\alpha_{2y}}{\varepsilon_2} \quad ,$$

$$\hat{\Xi}_{13} = \hat{\Xi}_{31} = \frac{\left[\alpha_{1x}\alpha_{1y} + u(1-u)\right]\cos v_{1} + \left[\alpha_{1y}(1-u) - \alpha_{1x}u\right]\sin v_{1}}{\varepsilon_{1}\sqrt{\beta_{1x}\beta_{1y}}} + \frac{\left[\alpha_{2x}\alpha_{2y} + u(1-u)\right]\cos v_{2} + \left[\alpha_{2x}(1-u) - \alpha_{2y}u\right]\sin v_{2}}{\varepsilon_{2}\sqrt{\beta_{2x}\beta_{2y}}}$$

Beam ellipsoid in 4D space – bilinear form

$$\hat{\Xi}_{14} = \hat{\Xi}_{41} = \sqrt{\frac{\beta_{1y}}{\beta_{1x}}} \frac{\alpha_{1x} \cos \nu_1 + (1-u)\sin \nu_1}{\varepsilon_1} + \sqrt{\frac{\beta_{2y}}{\beta_{2x}}} \frac{\alpha_{2x} \cos \nu_2 - u \sin \nu_2}{\varepsilon_2}$$

$$\hat{\Xi}_{23} = \hat{\Xi}_{32} = \sqrt{\frac{\beta_{1x}}{\beta_{1y}}} \frac{\alpha_{1y} \cos \nu_1 - u \sin \nu_1}{\varepsilon_1} + \sqrt{\frac{\beta_{2x}}{\beta_{2y}}} \frac{\alpha_{2y} \cos \nu_2 + (1-u) \sin \nu_2}{\varepsilon_2} ,$$

$$\hat{\Xi}_{24} = \hat{\Xi}_{42} = \frac{\sqrt{\beta_{1x}\beta_{1y}}\cos\nu_1}{\varepsilon_1} + \frac{\sqrt{\beta_{2x}\beta_{2y}}\cos\nu_2}{\varepsilon_2} \qquad .$$

Second order moments in terms of Twiss functions

$$\hat{\mathbf{X}}_{11} \equiv \left\langle x^2 \right\rangle = \varepsilon_1 \beta_{1x} + \varepsilon_2 \beta_{2x} \qquad ,$$

$$\hat{\mathbf{X}}_{12} \equiv \langle x p_x \rangle = \hat{\Sigma}_{21} = -\varepsilon_1 \alpha_{1x} - \varepsilon_2 \alpha_{2x} ,$$

$$\hat{\mathbf{X}}_{22} \equiv \left\langle p_{x}^{2} \right\rangle = \varepsilon_{1} \frac{(1-u)^{2} + \alpha_{1x}^{2}}{\beta_{1x}} + \varepsilon_{2} \frac{u^{2} + \alpha_{2x}^{2}}{\beta_{2x}}$$

$$\hat{\mathbf{X}}_{33} \equiv \left\langle y^2 \right\rangle = \varepsilon_1 \beta_{1y} + \varepsilon_2 \beta_{2y}$$

$$\hat{\mathbf{X}}_{34} \equiv \langle y p_y \rangle = \hat{\mathbf{X}}_{43} = -\varepsilon_1 \alpha_{1y} - \varepsilon_2 \alpha_{2y} ,$$

$$\hat{\mathbf{X}}_{44} \equiv \left\langle p_{y}^{2} \right\rangle = \varepsilon_{1} \frac{u^{2} + \alpha_{1y}^{2}}{\beta_{1y}} + \varepsilon_{2} \frac{(1 - u)^{2} + \alpha_{2y}^{2}}{\beta_{2y}}$$

Second order moments in terms of Twiss functions

$$\hat{\mathbf{X}}_{13} \equiv \langle xy \rangle = \hat{\mathbf{X}}_{31} = \varepsilon_1 \sqrt{\beta_{1x} \beta_{1y}} \cos \nu_1 + \varepsilon_2 \sqrt{\beta_{2x} \beta_{2y}} \cos \nu_2 \qquad ,$$

$$\hat{\mathbf{X}}_{14} \equiv \left\langle x p_{y} \right\rangle = \hat{\mathbf{X}}_{41} = \varepsilon_{1} \sqrt{\frac{\beta_{1x}}{\beta_{1y}}} \left(u \sin \nu_{1} - \alpha_{1y} \cos \nu_{1} \right) - \varepsilon_{2} \sqrt{\frac{\beta_{2x}}{\beta_{2y}}} \left((1 - u) \sin \nu_{2} + \alpha_{2y} \cos \nu_{2} \right) ,$$

$$\hat{\mathbf{X}}_{23} \equiv \left\langle y p_x \right\rangle = \hat{\mathbf{X}}_{32} = -\varepsilon_1 \sqrt{\frac{\beta_{1y}}{\beta_{1x}}} \left((1 - u) \sin \nu_1 + \alpha_{1x} \cos \nu_1 \right) + \varepsilon_2 \sqrt{\frac{\beta_{2y}}{\beta_{2x}}} \left(u \sin \nu_2 - \alpha_{2x} \cos \nu_2 \right)$$

$$\hat{\mathbf{X}}_{24} \equiv \left\langle p_x p_y \right\rangle = \hat{\mathbf{X}}_{42} = \varepsilon_1 \frac{\left(\alpha_{1y} (1 - u) - \alpha_{1x} u\right) \sin \nu_1 + \left(u(1 - u) + \alpha_{1x} \alpha_{1y}\right) \cos \nu_1}{\sqrt{\beta_{1x} \beta_{1y}}} + \varepsilon_2 \frac{\left(\alpha_{2x} (1 - u) - \alpha_{2y} u\right) \sin \nu_2 + \left(u(1 - u) + \alpha_{2x} \alpha_{2y}\right) \cos \nu_2}{\sqrt{\beta_{2x} \beta_{2y}}} .$$

Summary

- ❖Relationships between the eigen-vectors, beam emittances and the beam ellipsoid in 4D phase space
 - From the beam ellipsoid to the eigen-vectors (equivalence of both pictures)
- New parametrization of eigen-vectors in terms of generalized Twiss functions
 - Complete Weyl-like representation
 - ♠ 10 independent parameters to fully describe the motion
 - transport line ambiguities resolved
 - Developed software based on this representation allows effective analysis of coupled betatron motion for both circular accelerators and transfer lines (OptiM).

