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The Hamiltonian of Charged Particle in Electromagnetic
Field

The Hamiltonian for a charged particle in an external
electromagnetic field is given by

H(x , px , y , py ,−pt , ct; s) = −[1 + K (s)x ]× [
e

p0
As(s)+√

1− [px −
e

p0
Ax(s)]2 − [py −

e

p0
Ay (s)]2 − 2pt

β
+ p2

t ]

(1)

β = v
c Relativistic factor

pt = − δE
p0c

K (s) = 1
ρ(s) ( ρ(s) radius of curvature)

Hisham Kamal Sayed G. Krafft A. Bogacz Nonlinear Beam Dynamics



Equations of Motion From The Hamiltonian
Chromaticity

Chromaticity For Particle Colliders

The Hamiltonian
Particles With Momentum Deviation
Expansion of The Hamiltonian
Equations of motion
Hill’s Equations

Motion of Particles With Momentum Deviation

A particle with a momentum deviation δ ≡ p−po
po

will have a
Hamiltonian generated from the following canonical transformation

F2 =
ct

β
[1−

√
1 + β2 (2δ + δ2)] (2)

H2 = H1 +
∂F2

∂s
(3)

−cT =
∂F2

∂δ
= − β (1 + δ) ct√

1 + β2 (2δ + δ2)
(4)

pt =
∂F2

∂(ct)
=

1

β
[1−

√
1 + β2(2δ + δ2)] (5)

where t = T

√
1+β2(2δ+δ2)

β(1+δ)
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The new Hamiltonian

H(x , px , y , py , δ, ct; s) = −[1 + K (s)x ]× [
e

p0
As(s)+√

(1 + δ)2 − [px −
e

p0
Ax(s)]2 − [py −

e

p0
Ay (s)]2]

(6)

Where 1− 2
βpt + p2

t = (1 + δ)2
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Approximations

Adiabatic approximation: momentum deviation can be viewed
as a slowly varying parameter

Considering the multipole expansion of the vector potential in
the source-free region with piece-wise constant fields (dipoles
with cylindrical geometry and quarupoles and sextupoles with
Cartesian geometry)

Considering the case where the local radius of curvature is
small

Ax(s) = 0 (7a)

Ay (s) = 0 (7b)

e

p0
As(s) = −Re

∞∑
n=1

1

n
(ian(s) + bn(s))(x + iy)n (7c)
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Expansion of The Hamiltonian to third order in the phase
space

H(x , px , y , py ; s) =
p2
x + p2

y

2(1 + δ)
− b1(s)xδ +

b2
1(s)

2
x2+

b2(s)

2
(x2 − y2) +

b3(s)

3
(x3 − 3xy2) + O(4)

(8)
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Equations of motion derived from Hamilton’s equations

x ′ =
∂H

∂px
=

px
1 + δ

+ O(3) (9a)

p′x = −∂H
∂x

= b1(s)δ − (b2
1(s) + b2(s))x − b3(s)(x2 − y2) + O(3)

(9b)

y ′ =
∂H

∂py
=

py
1 + δ

(9c)

p′y = −∂H
∂y

= b2(s)y + 2b3(s)xy + O(3) (9d)

(9e)
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Hill’s Equations

Combining Hamilton’s equations of motion into two second order
ODE’s, we could reach Hill’s equations.

x ′′ +
b2(s) + b2

1(s)

1 + δ
x = b1(s)δ − b3(s)

1 + δ
(x2 − y2) + O(3) (10a)

y ′′ − b2(s)

1 + δ
y =

2b3(s)

1 + δ
xy + O(3) (10b)
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First Order Chromaticity

Origin of Chromaticity

Deviations of particle energies from design energy cause
perturbations in the solutions of the equations of motion

Focusing errors due to energy error cause particles to be
imaged at different focal points causing a blur of the beam
spot

Tune chromaticity

The variation of tunes with energy ξ = ∆ν
∆p/p0
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First Order Chromaticity

Chromaticity in linear colliders

At the collision point of linear colliders the blur causes severe
degradation of the attainable luminosity

Chromaticity in circular colliders

The tune of the accelerator is determined by the overall focusing
and tune errors occur when the focusing system is in error.

Avoid loss of particles due to tune shifts into resonances

Prevent beam loss due to headtail instability
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First Order Chromaticity

The lowest order chromatic perturbation is caused by the
variation of the focal length of the quadrupoles with energy
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First Order Chromaticity

Particles with different energies are separated by the introducing dispersion function.
Once the particles are separated by energy we apply different focusing corrections
depending on the energy of the particles
Higher energy particles are focused less than ideal energy particles and lower energy
particles are overfocused
Sextupole magnet introduce focusing for higher energy particles and defocusing for
lower energy particles

Hisham Kamal Sayed G. Krafft A. Bogacz Nonlinear Beam Dynamics



Equations of Motion From The Hamiltonian
Chromaticity

Chromaticity For Particle Colliders

First Order Chromaticity
Derivation of First Order Chromaticity
Chromaticity Of Periodic FODO Lattice
Correcting Chromaticity

Derivation of First Order Chromaticity

From equation 10 considering the case for only quadrupole and
sextupole magnets b1(s) = 0

1
1+δ ≈ (1− δ + ...)

x ′′ + b2(s)x(1− δ) = −b3(1− δ)(x2 − y2) (11a)

y ′′ − b2(s)y(1− δ) = 2b3(1− δ)xy (11b)

NOTE

From now on we will change notations to be consistent with
Weidemann’s
Quadrupole field k = b2

Sextupole field m = 2b3
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Derivation of First Order Chromaticity

To retain only betatron oscillation terms involving xβ or yβ to
derive chromatic tune shifts.
Setting
x = xβ + ηxδ
y = yβ where ηy = 0
Three types of chromatic perturbation terms:

Terms depending on the betatron motion only

Terms depending on the momentum error only

Terms depending on both
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x ′′ + k(s)x(1− δ) = −m

2
(1− δ)(x2 − y2) (12a)

y ′′ − k(s)y(1− δ) = m(1− δ)xy (12b)

x ′′β + kxβ = kxβδ −mηxxβδ −
m

2
(x2
β − y2

β) + O(3) (13a)

y ′′β − kyβ = −kyβδ + mηyyβδ + mxβyβ) + O(3) (13b)
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Ignoring the nonchromatic terms of second order (geometric
aberrations)

x ′′β + kxβ = (k −mηx)xβδ (14a)

y ′′β − kyβ = −(k −mηy )yβδ (14b)

The perturbation terms are linear in the betatron amplitude

ξx = − 1

4π

∮
βx(k −mηx)ds (15a)

ξy =
1

4π

∮
βy (k −mηx)ds (15b)
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Natural Chromaticity

ξx0 = − 1

4π

∮
βxkds (16a)

ξy0 =
1

4π

∮
βykds (16b)

Natural chromaticities are always negative which is to be expected
since focusing is less effective for higher energy particles (δ > 0)
and therefore the number of betatron oscillations is reduced.
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Symmetric FDOD cell

FODO period ==> 1/2QF − L− QD − L− 1/2QF
The transformation matrix with thin lens approximation

MFODO =

(
1− 2L2

f 2 2L(1 + L
f )

− 1
f ∗ 1− 2L2

f 2

)
(17)

where f = 1/kl , ff = −fd = f , 1/f ∗ = 2(1− L/f )L/f 2
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Symmetric FDOD cell

In the middle of QF βx = β+, βy = β−

In the middle of QD βx = β−, βy = β+

β+ = L
κ(κ+ 1)√
κ2 − 1

(18a)

β− = L
κ(κ− 1)√
κ2 − 1

(18b)

sin
φ

2
=

1

κ
(18c)

κ = f
L FODO parameter
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Chromaticity of thin lens symmetric FODO Cell

Using what we learnt about FODO cells with thin lens
approximation
The Chromaticity of one FODO half cell is

ξx0 = − 1

4π
(β+

∫
k+ds + β−

∫
k−ds) = −(β+ − β−)

4π

∫
kds

(19)
β+ at center of focusing quadrupole
β− at center of defocusing quadrupole
k+ = k− = k quadrupole strength
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Chromaticity of thin lens symmetric FODO Cell

From FODO cells slides we use

β+ = L
κ(κ+ 1)√
κ2 − 1

(20a)

β− = L
κ(κ− 1)√
κ2 − 1

(20b)

κ = f
L FODO parameter and

∫
kds = 1

f = 1
(κL)

ξx0 = − 1

2π

1√
κ2 − 1

= − 1

π
tan(ψx/2) (21)

The natural chromaticity of 90o FODO cell is 1/π
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Correcting Chromaticity

Sextupoles must be placed along the orbit of a circular
accelerator or along a beam transport line at locations where
the dispersion function does not vanish

the nonlinear nature of sextupole fields which causes dynamic
instability for large amplitudes for which the sextupole field is
no more a perturbation. The largest betatron oscillation
amplitude which is still stable in the presence of nonlinear
fields is called the dynamic aperture

To maximize the dynamic aperture it is prudent to distribute
many chromaticity correcting sextupoles along the beam line
or circular accelerator

To correct both the horizontal and the vertical chromaticity
two different groups of sextupoles are required
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Correcting Chromaticity

Using thin lens approximation, and replacing integrals in 15 by a
sum the corrected chromaticities are

ξx = ξx0 +
1

4π
(m1ηx1βx1 + m2ηx2βx2)ls = 0 (22a)

ξy = ξy0 +
1

4π
(m1ηx1βy1 + m2ηx2βy2)ls = 0 (22b)

Assume that two different sextupoles (each of length ls) at
locations s1 and s2. Solving for the sextupole strengths

m1ls = − 4π

ηx1

ξx0βy2− ξy0βx2

βx1βy2 − βx2βy1
(23a)

m2ls = − 4π

ηx2

ξx0βy1− ξy0βx1

βx1βy2 − βx2βy1
(23b)
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Dispersion function at sextupoles should be large to minimize
sextupoles strength

Betatron functions must be βx >> βy at m1 sextupole and
βx << βy at the m2 sextupole to avoid fighting between
sextupoles leading to excessive strength requirements

Only two sextupoles in a ring to correct chromaticities leads
to very strong sextupoles causing both magnetic design
problems and strong higher order aberrations

Two families of sextupoles with individual magnets distributed
evenly around the circular accelerator so the total required
sextupole strength is spread over all sextupoles
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For the general case of chromaticity correction

ξx = ξx0 +
1

4π

∑
i

miηxiβxi lsi (24a)

ξy = ξy0 +
1

4π

∑
i

miηxiβyi lsi (24b)

The sum is taken over all sextupoles. In the case of a two family
correction scheme we still can solve for m1 and m2 by grouping the
terms into two sums
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Variation of the vertical tune with energy in the storage ring PEP
if the chromaticity is corrected by only two families of sextupoles
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Sextupoles Separated by a -I Transformation

To overcome amplitude dependent aberration introduced by
sextupoles
Sextupoles are identified in pairs
Each pair is separated by a negative unity transformation -I

−I =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (25)

Exercise

What is the phase advance in both planes given by this
transformation?
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The sextupoles are thin magnets introducing kicks on particle
trajectories given by

∆x ′ = −1

2
m0ls(x2 − y2) (26a)

∆y ′ = −m0lsxy (26b)

The (4× 4) transformation matrix through a thin sextupole Ms

Ms(x0, y0) =


1 0 0 0

−1
2m0lsx0 1 1

2m0lsx0 0
0 0 1 0
0 0 m0lsx0 1

 (27)
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Evaluating the complete transformation through Sextupole pair
separated by -I transformation

Mt = Ms(x0, y0)(−I )Ms(−x0,−y0) = −I (28)

Shows a complete cancellation of geometric aberrations in both
horizontal and vertical planes
This correction scheme has been applied successfully to the final
focus system of the Stanford Linear Collider
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Example of Chromaticity Correction

FODO lattice with 90o cells, Lq = 3.6m integrated half quadrupole strength of
(klq)−1 =

√
2Lq

(a) Upright ellipse at the beginning of the FODO lattice
(b) Quad focusing tilted ellipse at the entrance to first sext
(c) The thin lens sextupole introduces significant angular perturbation
(d) Large lateral aberrations in the quad QF
(e) At the entrance to second sext the distorted phase ellipse is rotated by 180o and all
aberrations are compensated again by this sextupole
(f) Ellipse at the end of the third FODO cell is upright with no
distortions
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Example of Chromaticity Correction

The evolution of the phase ellipse with a phase advance between
the sextupole pair of 1750

A distortion of the phase ellipse due to aberrations can be observed
Instability introduced as the particles pass through many similar
cells
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Montague Chromatic Function

Comparing the motion of particles with δp/p to on momentum particles. Let

β1 = β(0), β2 = β(δ) (29a)

α1 = α(0), α2 = α(δ) (29b)

φ1 = φ(0), φ2 = φ(δ) (29c)

∆β = β2 − β1, β =
√
β1β2 (30a)

∆φ = φ2 − φ1, φ =
1

2
(φ1 + φ2) (30b)

∆k = k2(δ)− k1(0) (30c)

k focusing gradient error
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Montague Chromatic Function

Let us define the chromatic variables

A =
α2β1 − α1β2√

β1β2
(31a)

B =
β2 − β1√
β2β1

=
∆β

β
(31b)

Differntiation

dA

ds
= β∆K + 2B

dφ

ds
(32a)

dB

ds
= 2A

dφ

ds
(32b)

In a region with ∆k = 0

d

ds
(A2 + B2) = 0 (33)

Therefore (A2 + B2) is invariant
Montague Chromatic Function

W =
1

2
(A2 + B2)

1
2 (34)

Hisham Kamal Sayed G. Krafft A. Bogacz Nonlinear Beam Dynamics



Equations of Motion From The Hamiltonian
Chromaticity

Chromaticity For Particle Colliders

First Order Chromaticity
Derivation of First Order Chromaticity
Chromaticity Of Periodic FODO Lattice
Correcting Chromaticity

Montague Chromatic Function

Montague Chromatic Function

W =
1

2
(A2 + B2)

1
2 (35)

Dimensionless
Absolute measure of the linear chromatic perturbation
Factor of 1/2 due to chromatic function oscillate at twice betatron frequecny
Useful in optimizing required sextupole strength for chromatic corrections (MAD-8 or
MAD-X). especially local chromatic correction for low-β insertions as colliders final focus
quads.
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Spread of particle beam at interaction point

In Collider ring accelerators the main source of chromaticity is the final focus quadrupoles
(IR)
This limits the achievable luminosity of any accelerator

Chromatic dilution of beam size

∆σy
σ∗y

=
F

β∗
σE (36)
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