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Outline ndion

UNIVERSITY

» Beam dynamics with synchrotron radiation:

® Discuss the effect of synchrotron radiation on the (linear) motion of particles
in storage rings.

® Define action-angle variables for describing symplectic motion of a particle
along a beam line.

® Derive expressions for the damping times of the vertical, horizontal and
longitudinal emittances.

@® Introduce the synchrotron radiation integrals (Sand’s Integrals).

@® Discuss the effects of quantum excitation, and derive expressions for the
equilibrium horizontal and longitudinal beam emittances in an electron
storage ring.

# M. Sands, “The physics of electron storage rings, an introduction” SLAC-121. 1970
# A. Wolski, University of Liverpool and the Cockcroft Institute, CAS 2009,
http://cas.web.cern.ch/cas/Germany2009/Lectures/PDF-Web/Wolski-1.pdf
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Outline — cont. TIRNION

UNIVERSITY

» Equilibrium emittance and storage ring lattice design

» Emittance preserving lattices :

® The natural emittance for different types of lattice - Examples:
# FODO
# Double Bend Achromat (DBA)

#® Theoretical Minimum Emittance (TME)
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Coordinate system TIRNION

UNIVERSITY

_ L d
Py = M
1
y P= M
X

reference trajectory

P, = reference momentum
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Longitudinal coordinate IDANION

UNIVERSITY

yn

X

A J

O )
reference particle

The reference particle is a particle travelling along the reference trajectory
with momentum P, and velocity gc.

If a particle is time 7 ahead of the reference particle, then the longitudinal
coordinate z is defined by:

Z=CT
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Energy deviation [OVENION

UNIVERSITY

yn

X

If the particle has total energy E, then the energy deviation &is defined by:
. FE 1
0

Fe  f,

For ultra-relativistic particles (= £, ~ 1), we have: 6

2

AL
ECI
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Canonical variables IDANION

UNIVERSITY

With the definitions in the previous slides, the coordinates and momenta
form canonical conjugate pairs:

(x.p,)  (np) (2.0

What this means, is that if M represents the linear transfer matrix for a beam

line consisting of some sequence of drifts, solenoids, dipoles, quadrupoles,
or RF cavities, i.e.:

X X
Py Py
V V
=M (S 1550 ) '
P, P,
z z
o o
=5 §=5g

then, neglecting radiation from the particle, the matrix M is symplectic.
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Symplectic matrices

Mathematically, a matrix A/ is symplectic if it satisfies the relation:

MU M= U
where U is the antisymmetric matrix:
0 1 0 0 0
-1 0 0 0 0
0 0 1 0 0
U =
0 0 -1 0 0 0
0 0 0 0 1
0 0 0 -1 0

Physically, symplectic matrices preserve areas in phase space.

For example, in one degree of freedom:

) ’

iy R
L U/
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Twiss parameters and the particle action %,

UNIVERSITY

So o 2
4P In an uncoupled periodic beam line,

Iryad oA - - - o particles trace out ellipses in phase
space with each pass through the

5 slope = =57 periodic cell. The shape of the ellipse
| ! defines the Twiss parameters at the
°1 ! observation point.

: 57T > L The area of the ellipse defines the
52 o action J_of the particle.

2J,
%0 \/7 The action is the amplitude of the
motion of the particle as it moves

Area of the ellipse = 27/, along the beam line.
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Cartesian variables and action-angle variables NN

UNIVERSITY

Applying simple geometry to the phase space ellipse, we find that the action
(for uncoupled motion) is related to the Cartesian variables for the particle by:

2J, =y x* +2a.xp, + . p;

We also define the angle ¢_ as follows:

tan @, =—ﬁx&—%
»

The action-angle variables provide an alternative to Cartesian variables for
describing the dynamics of a particle moving along a beam line. The
advantage of action-angle variables is that, under symplectic transport, the
action of a particle is constant.

It turns out that the action-angle variables are canonically conjugate.

Note: if the beam line is coupled, then we need to make a coordinate transformation to
the "normal mode" coordinates, in which the motion in one mode is independent of the
motion in the other modes. Then we can apply the equations as above.
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Action and Emittance
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TDMINION

UNIVERSITY

The action J_is a variable used to describe the amplitude of the motion of an
individual particle. In terms of the action-angle variables, the Cartesian
coordinate and momentum can be written:

x=,/20.J cosp,

P

2J.

X

X

The emittance ¢_is the average amplitude of all particles in a bunch:

£, =(J,)

With this relationship between the emittance and the average action, we can
obtain the following familiar relationships for the second-order moments of

the bunch:

2N
()= fe,

(xp,)=—a.&,

(Pi)=7.e.

Again, this is true for uncoupled motion.
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Action and Radiation IIANION

UNIVERSITY

So far, we have considered only symplectic transport, i.e. motion of a
particle in the electromagnetic fields of drifts, dipoles, quadrupoles etc.
without any radiation.

However, we know that a charged particle moving through an
electromagnetic field will (in general) undergo acceleration, and a charged
particle undergoing acceleration will radiate electromagnetic waves.

What impact will the radiation have on the motion of the particle?

In answering this question, we will consider first the case of uncoupled
vertical motion — for a particle in a storage ring, this turns out to be the
simplest case.
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Radiation damping of vertical emittance  9a.

UNIVERSITY

A J

A relativistic particle will emit radiation with an opening angle of 1/ywith

respect to its instantaneous direction of motion, where yis the relativistic
factor.

For an ultra-relativistic particle, y>> 1, we can assume that the radiation is
emitted directly along the instantaneous direction of motion of the particle.
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Radiation damping of vertical emittance 9z

UNIVERSITY
s
The change in momentum of the particle is given by:
, o d
p'=p-dp= p( ——p}
PO
where dp is the momentum carried by the radiation, and we assume that:
p=L
Since there is no change in direction of the particle, we must have:
: . dp
e p"r( £ )
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Radiation damping of vertical emittance  9a.

UNIVERSITY

After emission of radiation, the vertical momentum of the particle is:

Now we substitute this into the expression for the vertical betatron action
(valid for uncoupled motion):

2J, =7, v+ 2a,yp, + P, pf,

to find the change in the action resulting from the emission of radiation:

d .
d'].v - _(OJ}" VP, s vP f )Fp
0

We average over all particles in the beam, to find:

d !
<dJJ_,> = dgj_, =g, ?‘:
where we have used: (yp,)=-a,&, (pi)=r,6, and By —a =
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Radiation damping of vertical emittance  9a.

UNIVERSITY

For a particle moving round a storage ring, we can integrate the loss in
momentum around the ring. The emittance is conserved under symplectic
transport; so if the non-symplectic (radiation) effects are slow, we can write:

P dt

0

de g ]
de :—gl;d—p . :—i§d—‘DM— Yo g,
' I, * L, Ed,

where 7, is the revolution period, and U, is the energy loss in one turn. The
approximation is valid for an ultra-relativistic particle, which has E ~ pc.

We define the damping time z:

£y

0

T, =21,

so the evolution of the emittance is:

g,(t)=¢, (O)exp( 2 TL]

¥

Typically, the damping time in a synchrotron storage ring is measured in tens of
milliseconds, whereas the revolution period is measured in microseconds; so the
radiation effects really are "slow".
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Radiation damping of vertical emittance  9a.

UNIVERSITY

Note that we made the assumption that the momentum of the particle was
close to the reference momentum:

p~1

If the particle continues to radiate without any restoration of energy, we will
reach a point where this assumption is no longer valid. However, electron
storage rings contain RF cavities to restore the energy lost by synchrotron
radiation. But then, we have to consider the change in momentum of a
particle as it moves through an RF cavity.

RF cavity / \ = _p-—aa

Fortunately, RF cavities are usually designed with a longitudinal electric
field, so that particles experience a change in longitudinal momentum as
they pass through, without any change in transverse momentum.
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Synchrotron radiation energy loss O
[DMINION
UNIVERSITY
To complete our calculation of the vertical damping time, we need to find the
energy lost by a particle through synchrotron radiation on each turn through
the storage ring. We quote the (classical) result that the power radiated by a
particle of charge e and energy E in a magnetic field B is given by:
C
P; —_7 C3€2B2E2
B | 2
C,is a constant, given by:
C - ~8846x10° m/GeV?
' 36‘0(???(32)4
A charged particle with energy £ in a magnetic field B follows a circular
trajectory with radius p, given by:
E
Bp=—
ec
Hence the synchrotron radiation power can be written:
Cf, 4
P = cE—2
C 2T p
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Synchrotron radiation energy loss o

UNIVERSITY

For a particle with the nominal energy, and traveling at (close to) the speed
of light around the closed orbit, we can find the energy loss simply by
integrating the radiation power around the ring:

U,=4§P, a’t:§P?%

Using the previous expression for P,, we find:

U

0

C 1
:2—}'E; —ZdS
T p

Conventionally, we define the second synchrotron radiation integral, 1:

I :§ 1,, ds

-

Yo,

In terms of 7,, the energy loss per turn U, is written:

G
Uy=5EElL
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The first synchrotron radiation integral [DABNION

UNIVERSITY

Note that Z, is a property of the lattice (actually, of the reference trajectory),
and does not depend on the properties of the beam.

Conventionally, there are five synchrotron radiation integrals defined, which
are used to express in convenient form the dynamics of a beam emitting
radiation.

The first synchrotron radiation integral is not, however, directly related to the
radiation effects. It is defined as:

I :Ef%ds

where 7. is the horizontal dispersion.

The momentum compaction factor, a,, can be written:

_ldcl _ 1 1
p 1 > 1 § a}'s \ 1

c,ds|,, Cp C,
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Damping of horizontal emittance TOMNION

UNIVERSITY

Analysis of the radiation effects on the vertical emittance was relatively
straightforward. When we consider the horizontal emittance, there are three
complications that we need to address:

— The horizontal motion of a particle is often strongly coupled to the
longitudinal motion.

— Where the reference trajectory is curved (usually, in dipoles), the path

length taken by a particle depends on the horizontal coordinate with
respect to the reference trajectory.

— Dipole magnets are sometimes built with a gradient, so that the

vertical field seen by a particle in a dipole depends on the horizontal
coordinate of the particle.
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UNIVERSITY

Horizontal-longitudinal coupling

S— .{effe?son Lab s Thomas Jefferson National Accelerator Facility

Coupling between transverse and longitudinal planes in a beam line is
usually represented by the dispersion, 7. So, in terms of the horizontal
dispersion, the horizontal coordinate and momentum of a particle are given
by:

27 5
Py =" ﬂ (Slﬂ @, + &, COSQ, )+ pr

X

When a particle emits radiation, we have to take into account:

— the change in momentum of the particle (because of the momentum
carried by the radiation);

— the change in coordinate x and momentum p_ resulting from the
change in energy deviation 6.

When we analysed the vertical motion, we ignored the second effect,
because we assumed that the vertical dispersion was zero.
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Damping of horizontal emittance oy

UNIVERSITY

Taking all the above effects into account, we can proceed along the same
lines as for the analysis of the vertical emittance. That is:

+ Write down the changes in coordinate x and momentum p_ resulting
from an emission of radiation with momentum dp (taking into account
the additional effects of dispersion).

+  Substitute expressions for the new coordinate and momentum into the
expression for the horizontal betatron action, to find the change in
action resulting from the radiation emission.

« Average over all particles in the beam, to find the change in the
emittance resulting from radiation emission from each particle.

« Integrate around the ring (taking account of changes in path length
and field strength with x in the bends) to find the change in emittance
over one turn.

The algebra gets somewhat cumbersome, and is not especially
enlightening: see Appendix A for more details. Here, we just quote the
result...
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Radiation damping of horizontal emittance %,
UNIVERSITY
The horizontal emittance decays exponentially:
de. 2
ro_Z e
dt T,
where the horizontal damping time is given by:
r=ttag,
jx LI.O
The horizontal damping partition number ;_is given by:
I/
Jx I,
where the fourth synchrotron radiation integral 7, is given by:
0B,
I,=§% Lok las  k=LZ
plp Ly Ox
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Appendix A: Damping of horizontal emittance 0,

UNIVERSITY

In this Appendix, we derive the expression for radiation damping of the
horizontal emittance:

de. 2
—=——c,
di T
where:
2 F I
T‘c:__rﬂ 0 ‘};1_:1__4
7. U, ' I

To do this, we proceed as follows:

1. We find an expression for the change of horizontal action of a single
particle when emitting radiation with momentum dp.

2. We integrate around the ring to find the change in action per
revolution period.

3. We average the action over all particles in the bunch, to find the
change in emittance per revolution period.
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Appendix A: Damping of horizontal emittance oy
UNIVERSITY
To begin, we note that, in the presence of dispersion, the action J_is written:
2'].‘-'( = .;Vxl:{:z +2ar:{ﬁr +ﬁ1£{53
where:
X=x-10  p,=p,—1,0
After emission of radiation carrying momentum dp, the variables change by:
. dp ~ . dp ~ |, dp _ dp
O 0—— XX+ — B p|l-—|+n (1-0)—
P Ly P px( p } M )Po
The resulting change in the action is:
J = J +dJ,
S— .geff;?son Lab s Thomas Jefferson National Accelerator Facility I
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Appendix A: Damping of horizontal emittance

The change in the horizontal action is:

d dp\ dJ 1 d dp d
dJ_ = —wl—p+w,, e 4 — = —Ww, ——‘p+w2 —I;—p (A1)
| 2 p dt P dt ‘P di
where, in the limit & — 0:
wo=axp, +Bpi—n(rx+a.p)-n,lax+pp,) (A2)

and:

| l
w, == (rnl +2a i, + Bk )-len + B o+~ Bpl (A3)
5 2

Treating radiation as a classical phenomenon, we can take the limit dp — 0
in the limit of small time interval, dr — 0. In this approximation:

dJ, . 1 dp L P
d  'Pd  Pc

where P, is the rate of energy loss of the particle through radiation.
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Appendix A: Damping of horizontal emittance oy
UNIVERSITY
To find the average rate of change of horizontal action, we integrate over
one revolution period:
dJ 1 P
X =——§wl —dt
dr I,° Fc e
— T
We have to be careful changing the variable of T f,___._ﬁ._____\ —_—
integration where the reference trajectory is curved: trajectory
dt = ac = [1 - EJ ds
c p)c
So:
dJ | y
= fwp|1+=|ds  (A4) |
dr I,Bc” oop N
wy
where the rate of energy loss is:
C 3 222 |
P =—LceB°E (AS)
T2z
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Appendix A: Damping of horizontal emittance oy
UNIVERSITY
We have to take into account the fact that the field strength in a dipole can
vary with position. To first order in x we can write:
OB,
B=B,+x— (AB)
Ox
Substituting equation (A6) into (AS), and with the use of (A2), we find (after
some algebral) that, averaging over all particles in the beam:
I
{ <“’1ﬂ(1+l}> ds = CUU[I ——4ng (A7)
P L)
where:
- _C l 7, (1
U, =ﬁcE§[2 L =§?d5 I, =§;(;+2li0’3
and £k, is the quadrupole gradient in the dipole field:
0B,
k = Rt
P, 0Ox
S— .geffe’?son Lab s Thomas Jefferson National Accelerator Facility I
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Appendix A: Damping of horizontal emittance

Combining equations (A4) and (A7) we have:

de, __1Uo[) L &,
di T E\ 1)

2

Defining the horizontal damping time, 7.
2K,
jx LITO

T

X

0 j.le__

the evolution of the horizontal emittance can be written:

The quantity ;_is called the horizontal damping partition humber. For most
lattices, if there is no gradient in the dipoles, then ;_is very close to 1.
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Damping of synchrotron oscillations o

UNIVERSITY

So far, we have considered the effects of synchrotron radiation on the
transverse motion. There are also effects on the longitudinal motion.

Generally, synchrotron oscillations are handled differently from betatron
oscillations, because the synchrotron tune in a storage ring is usually much
less than 1, whereas the betatron tunes are much greater than 1.

To find the effects of radiation on synchrotron motion, we proceed as
follows:

— We write down the equations of motion (for the variables z and o) for a
particle performing synchrotron motion, including the radiation energy
loss.

— We express the energy loss per turn as a function of the energy
deviation of the particle. This introduces a "damping term" into the
equations of motion.

— Solving the equations of motion gives synchrotron oscillations (as
expected) with amplitude that decays exponentially.
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Damping of synchrotron oscillations .
UNIVERSITY
The change in energy deviation & and longitudinal coordinate z for a particle
in one turn around a storage ring are given by:
AS = ar sin{gos = CORFZ} v
0 ¢ E{}
Az = —O!pCO(S‘
where 1, is the RF voltage and o, the RF frequency, E, is the reference
energy of the beam, ¢, is the nominal RF phase, and U is the energy lost by
the particle through synchrotron radiation.
If the revolution period is 7, then we can write the longitudinal equations of
motion for the particle:
do _ QVRF Siﬂ(@s B @RFZ] ) U
dt  E,I, c E,T,
dz
E — —CXPC'(S
S— .!Efféifon Lab s Thomas Jefferson National Accelerator Facility I
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Damping of synchrotron oscillations o

UNIVERSITY

Let us assume that z is small compared to the RF wavelength, i.e. o,z/c << 1.

Also, the energy loss per turn is a function of the energy of the particle

(particles with higher energy radiate higher synchrotron radiation power), so

we can write (to first order in the energy deviation):
dU .dU

— [J’TD + Eofs)_
dE |,y JE

U = L'TO +AFE

_EZ_EG

Further, we assume that the RF phase ¢, is set so that forz= 6=0, the RF
cavity restores exactly the amount of energy lost by synchrotron radiation.
The equations of motion then become:

do el (0] | . dU
—=—— M cosp - z——6
dz .
—=— pcé)
dt
S— .gefﬂ;?son Lab s Thomas Jefferson National Accelerator Facility I
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Damping of synchrotron oscillations o

UNIVERSITY

Combining these equations gives:

d’s as .
Z +2aE—(+a)S‘c5 =0
dt dt

This is the equation for a damped harmonic oscillator, with frequency o, and
damping constant «, given by:

el @
o =———cosp, ——a,
Eo 0
1 dU
ET T dE
0 E=E,
S— .geff;?son Lab s Thomas Jefferson National Accelerator Facility I
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Damping of synchrotron oscillations o

UNIVERSITY

If oz << w,, the energy deviation and longitudinal coordinate damp as:

5(t)= 5 exp(—a,t)sin(@.t —6,)

a.c a
Sexp(—at)cos(mr—6,)

z(1) =

P
@,

To find the damping constant «,, we need to know how the energy loss per
turn U depends on the energy deviation &...
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Damping of synchrotron oscillations NI

UNIVERSITY

We can find the total energy lost by integrating over one revolution period:
U=§p,d

To convert this to an integral over the circumference, we should recall that
the path length depends on the energy deviation; so a particle with a higher
energy takes longer to travel round the lattice.

dC’
-’-“".-._.-.--—_——h-_--"‘—_

ds dC
«--"""""_—._-_—_""""-- reference df = —

/ trsqeclory C

dC[ st,[ LI é]ds
P P

. s o)
- =[5 o
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Damping of synchrotron oscillations o

UNIVERSITY

With the energy loss per turn given by:

I
U—Efg[nia‘]dg
U p

and the synchrotron radiation power given by:

C‘, 7 7 7 C‘ 4
P =—Lc’¢*B°E” :—}’CE—Q
T2 27 p
we find, after some algebra:
dU .U,
. ~JET,
dE E=E, Eo
where:
I
U,=—LE,;1I =2+—=
0TS ot JE I,
I, and I, are the same synchrotron radiation integrals that we saw before:
| | | 0B,
I Vs L
Yo, p\p B, oOx
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Damping of synchrotron oscillations o

UNIVERSITY

Finally, we can write the longitudinal damping time:

| 2 E
- -2lug,
ag, j. U,

U, is the energy loss per turn for a particle with the reference energy E,,
following the reference trajectory. It is given by:

C
U,=—"- E{H2
2

j. Is the longitudinal damping partition number, given by:

I
Jo=2+—

2
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Damping of synchrotron oscillations

The longitudinal emittance is given by a similar expression to the horizontal

and vertical emittances:
£ = \/<22 ><§2> —(25>2

In most storage rings, the correlation (z6) is negligible, so the emittance
becomes:

E. RO O;

Hence, the damping of the longitudinal emittance can be written:

e.(t)=¢.(0) exp(— ZTL]
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Summary: synchrotron radiation damping %

UNIVERSITY

The energy loss per turn is given by:

C? 4 - 1 =3 3
U, :2—5012 C =8.846x107° m/GeV
T ]

The radiation damping times are given by:

2 E 2 E 2 FE
r —T, T — T r,=——T,

' Jx LO y .]J.- LO j: L’O

The damping partition numbers are:

I I
L =1-= =1 =2+

The second and fourth synchrotron radiation integrals are:

12=§%ds I, _§”l(?+2de
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Quantum excitation IDANION

UNIVERSITY

If radiation were a purely classical process, the emittances would damp to
nearly zero. However radiation is emitted in discrete units (photons), which
induces some “noise” on the beam. The effect of the noise is to increase
the emittance. The beam eventually reaches an equilibrium determined by
a balance between the radiation damping and the quantum excitation.

emitted
photon _
on-energy closed orbit
/ \ off-energy closed orbit
\ particle
bending trajectory
magnet
S— .geffe'?son Lab s Thomas Jefferson National Accelerator Facility I
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Quantum excitation of horizontal emittance %,

UNIVERSITY

By considering the change in the phase-space variables when a particle
emits radiation carrying momentum dp, we find that the associated change

in the betatron action is:
dJ_ =-w, dp +w, dp
| P P

0 0

where w, and w, are functions of the Twiss parameters, the dispersion, and
the phase-space variables (see Appendix A).

The time evolution of the action can then be written:

In the classical approximation, we can take dp — 0 in the limit of small time
interval, dr — 0. In this approximation, the second term on the right hand
side in the above equation vanishes, and we are left only with damping. But
since radiation is quantized, it makes no real sense to take dp — 0...
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Quantum excitation of horizontal emittance

To take account of the quantization of synchrotron radiation, we write the
time-evolution of the action as:

dJ 1 d dp d dJ Au (o’
- Z—Wl——p-l-l't’z [;?_p S ——=-wN quwa N—< - >j
dt R, dt R dt dt Rec ° Fc

where u is the photon energy, and Nis the number of photons emitted per
unit time.

In Appendix B, we show that this leads to the equation for the evolution of
the emittance, including both radiation damping and quantum excitation:

d(‘;x _ _igr n 2 C yg I_q
dt T jr. U1

X

where the fifth synchrotron radiation integral Z; is given by:

1. Efi;"ds

and the "quantum constant” C_is given by: ¢ =——=—
T 3243 me
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Appendix B: Quantum excitation of horizontal £
emittance IVINON

In deriving the equation of motion (A4) for the action of a particle emitting
synchrotron radiation, we made the classical approximation that in a time
interval dr, the momentum of the radiation emitted dp goes to zero as dr goes
to zero.

In reality, emission of radiation is quantized, so writing "dp — 0" actually
makes no sense.

Taking into account the quantization of radiation, the equation of motion for
the action (A1) should be written:

d dp) dJ. )
O 0 dt Fyc Iye

where N is the number of photons emitted per unit time.

The first term on the right hand side of (B1) just gives the same radiation
damping as in the classical approximation. The second term on the right
hand side of (B1) is an excitation term that we previously neglected...
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Appendix B: Quantum excitation of horizontal £
emittance DMNION

UNIVERSITY

Averaging around the circumference of the ring, the quantum excitation term
can be written:

Using equation (A3) for w,, we find that (for x << _and p, << 17, ) the
excitation term can be written:

e ] I
w,N 5%2 c>2 ~ 2EEC, i¥ H N <H > ds

where the "curly-H" function # is given by:

H,=yn +2anm, + B,
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Appendix B: Quantum excitation of horizontal ;
emittance [DMINION

Including both (classical) damping and (quantum) excitation terms, and
averaging over all particles in the bunch, we find that the horizontal
emittance evolves as:

de, 2 1
L= —— s +——
dr r. = 2E;C,

§N<u2>?{x ds (B2)

We quote the result (from quantum radiation theory):

/5 o b
N{u*)=2C,y Eo;” (B3)

where the "quantum constant” C_ is:

c =22 3839%10% m

K 32\/5 mc
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Appendix B: Quantum excitation of horizontal £
emittance DMNION

UNIVERSITY

Using equation (B3), and equation (A35) for P, and the results:

E{}
U,

| S
jr.=2—=T, U,=—=cE]l,
o 2T

we find that equation (B2) for the evolution of the emittance can be written:

di R I S |

where the fifth synchrotron radiation integral Z; is given by:

I, =§":Z; ds

Note that the excitation term is independent of the emittance: it does not
simply modify the damping time, but leads to a non-zero equilibrium
emittance.
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Quantum excitation of horizontal emittance %,

UNIVERSITY

The equilibrium horizontal emittance is found from:

de. 2 2 1
5,1. — 0 - _80 — qu,l 2 -5
df £,.=£&; T.\' jxrx Iz
The equilibrium horizontal emittance is given by:
80 — (jq:/E I-:
j.x'Il

Note that g, is determined by the beam energy, the lattice functions (Twiss
parameters and dispersion) in the dipoles, and the bending radius in the
dipoles.

&, Is sometimes called the “natural emittance” of the lattice, since it is the
horizontal emittance that will be achieved in the limit of zero bunch charge:
as the current is increased, interactions betweens particles in a bunch can
increase the emittance above the equilibrium determined by radiation
effects.
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Quantum excitation of vertical emittance 0,

UNIVERSITY

In many storage rings, the vertical dispersion in the absence of alignment,
steering and coupling errors is zero, so #, = 0. However, the equilibrium

vertical emittance is larger than zero, because the vertical opening angle of
the radiation excites some vertical betatron oscillations.

The fundamental lower limit on the vertical emittance, from the opening
angle of the synchrotron radiation, is given by(":

13 C,
55}]§|p|

In most storage rings, this is an extremely small value, typically four orders
of magnitude smaller than the natural (horizontal) emittance.

In practice, the vertical emittance is dominated by magnet alignment errors.
Storage rings typically operate with a vertical emittance that is of order 1%
of the horizontal emittance, but many can achieve emittance ratios
somewhat smaller than this.

(' T. Raubenheimer, SLAC Report 387, p.19 (1991).
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Quantum excitation of synchrotron oscillations o
UNIVERSITY
Quantum effects excite longitudinal emittance as well as transverse
emittance. Consider a particle with longitudinal coordinate z and energy
deviation &, which emits a photon of energy u.
5'=8'sin@ = Ssin@ — f?
0 -
a.C - o.C ~ e h““\
Z'=—2-5'cosf' =—L-5cosb Re \
o, o, ’ R
I ! »
o ' u ; C 2z
57 =67-26 L sing + Hz . fﬁ’
0 0 “nﬂh e
Averaging over the bunch gives:
TS 1~
Ao :< > where o :—<52>
2E; 2
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Quantum excitation of synchrotron oscillations o
UNIVERSITY
Including the effects of radiation damping, the evolution of the energy
spread is:
do; = 12 §N<u2> ds—ic:r;
dt  2E;C, T
Using equation (B3) from Appendix B for N(2), we find:
do; a2 L 2
dt S A
We find the equilibrium energy spread from dos/dt = 0:
co2 1
J;O — (—q}/ j:L}Z
The third synchrotron radiation integral 7, is given by:
|
13 = §m d.S
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Natural energy spread [V

UNIVERSITY

The equilibrium energy spread determined by radiation effects is:
2L
j:Ij

This is often referred to as the “natural” energy spread, since collective
effects can often lead to an increase in the energy spread with increasing
bunch charge.

The natural energy spread is determined essentially by the beam energy
and by the bending radii of the dipoles. Note that the natural energy spread
does not depend on the RF parameters (either voltage or frequency).

The corresponding equilibrium bunch length is:

a,c
__F
o.=——0;
@

5

We can increase the synchrotron frequency @,, and hence reduce the bunch
length, by increasing the RF voltage, or by increasing the RF frequency.
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Summary: radiation damping oy

UNIVERSITY

Including the effects of radiation damping and quantum excitation, the
emittances vary as:

e(r)=em)exp[-%}g(w{l_exp[_gﬂ

The damping times are given by:

_ _ _ E
.]J(Tx :.]y ¥ :jzrz :2[)_70170

0
The damping partition numbers are given by:

.jx:l_I_Al jy:l .jz:2+1_4

2 12
The energy loss per turn is given by:

-

| S (';V 4 . 103 3
U, ——LE'L C. =8.846x10° m/GeV
27 g
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Summary: synchrotron radiation integrals 9.,

UNIVERSITY

The natural emittance is:

, 1
g =C,y j}

C,=3.832x10" m

The natural energy spread and bunch length are given by:

5 5 ]3 a,c

c; =C,r

.Jiz]E ) @ ’
The momentum compaction factor is:

1
o =-—
P CU

The synchrotron frequency and synchronous phase are given by:

5 el,. @ . U
. =——L K o cosp sin @, = —
g E T P 5 5 I/:r

o Lo €V rr
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Summary: synchrotron radiation integrals

W
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TOMINION

UNIVERSITY

The synchrotron radiation integrals are:

I ::f?ijdg
|

1, :Efpzds

1, :§\p%d5

n( 0B,
14:§ﬁ[ : +2k1]d3 f= o
R, ox

%. 7
I,=9§ ‘p"; ds H, =10y +20,00,0,, + B,
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Radiation Damping - Re-cap D;%NION

UNIVERSITY

» So far we:

@ discussed the effect of synchrotron radiation on the (linear) motion of
particles in storage rings;

@ derived expressions for the damping times of the vertical, horizontal
and longitudinal emittances;

® discussed the effects of quantum excitation, and derive expressions
for the equilibrium horizontal and longitudinal beam emittances in an
electron storage ring.
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S-R integrals - Re-cap Doy

UNIVERSITY
The natural emittance is:
» 1 o
& =C,p* = C,=3.832x10"m
ijZ
The natural energy spread and bunch length are given by:
/ a.c
2 v 2
O-d:Cq;V .3 O, = - o
.]3]2 (0.5'
The momentum compaction factor is:
1,
A, =—-
Cy
The synchrotron frequency and synchronous phase are given by:
) v, . U
W, =— © e wiap CosQ, sin g, = —
Lk, 1y eVer
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S-R integrals - Re-cap

The synchrotron radiation integrals are:

I, :§% ds
1
I, :Efpz ds
I, = %ds
A

2

oB
4§m[1+2k1}ds k=

R)@x

2\ P
H

‘[5 §‘ ‘3 dS ﬂ‘x:yx’}?f—i_zax}?x"?px—l_ﬁx’?;x
o,
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Lattice Examples TDNINION

UNIVERSITY

* Practical implementations:
® FODO
® DBA (double-bend achromat)
® multi-bend achromat, including the triple-bend achromat (TBA)

® TME (theoretical minimum emittance)
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Calculating the natural emittance in a lattice

where C, is a physical constant, yis the relativistic factor, j, is the horizontal
damping partition number, and /; and 7, are synchrotron radiation integrals

7. Is and I, are all functions of the lattice, and independent of the beam
energy.

In most storage rings, if the bends have no quadrupole component, the
damping partition number;j_ = 1. In this case, we just need to evaluate the
two synchrotron radiation integrals:

I :J‘}[x ds I, :I l ds

P’ P

If we know the strength and length of all the dipoles in the lattice, it is
straightforward to evaluate 7,.

Evaluating /5 is more complicated: it depends on the lattice functions...
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FODO lattice - natural emittance oy

UNIVERSITY
Let us consider the case of a simple FODO lattice. To simplify this case, we
will use the following approximations:
— the quadrupoles are represented as thin lenses;
— the space between the quadrupoles is completely filled by the dipoles.
5 Windows NT 4.0 version 8.23dl 24/07/07 11.32.28 ) 55
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FODO lattice - natural emittance NI

UNIVERSITY

With the approximations in the previous slide, the lattice functions (Twiss

parameters and dispersion) are completely determined by the following
parameters:

— the focal length f/ of a quadrupole;

— the bending radius p of a dipole;

— the length L of a dipole.
The bending angle 6 of a dipole is given by. @ :£
Yo,
In terms of these parameters, the horizontal beta function and dispersion at
the centre of the horizontally-focusing quadrupole are given by:

4fpsin6)(2, fuos(9+ psind) 2fp(2f +p tan%)
f]x = 4 2 2 -
\/16f p —~ 4f + p? )p0526’]2 Jop

By symmetry, at the centre of a quadrupole, o, = 1, = 0.
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FODO lattice - natural emittance

We also know how to evolve the lattice functions through the lattice, using
the transfer matrices, M.

For the Twiss parameters, we use: A(s)=M - A(0)- M

where: A

I
O
RS
« |
AR
—

3 ) - 1_ ~0s3
The dispersion can be evolved using: ( T, J - M ( T J +(p( cos, )]
Mpx ) -

1 0
For a thin quadrupole, the transfer matrix is given by: M =( | }

UV
_ o COS— psins
For a dipole, the transfer matrix is given by: M= | g
—-;sin-;  COs; |
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FODO lattice - natural emittance NI

UNIVERSITY

With the expressions for the Twiss parameters and dispersion from the
previous two slides, we can evaluate the synchrotron radiation integral /..

Note: by symmetry, we need to evaluate the integral in only one of the
two dipoles in the FODO cell.

The algebra is rather formidable. The result is most easily expressed as a
power series in the dipole bending angle 6. We find that:

3

2N\73 2
L 4+ 2| "18-L_p*+0(0")
1, ' 2f
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FODO Iattice - natural emittance oy

UNIVERSITY

For small 6, the expression for 1/, can be written:

2 2 -3 2 2 -3
L o 12| 2[i-L_[1+2
I, 16~ 41* 16f- 417
This can be further simplified if p >> 2f (which is often the case):

ISN(I r }8f3

L, 16f7) p
and still further if 4/>> L (which is less generally the case):
I 3
L oS
I, p

Making the approximation j_~ 1 (since we have no quadrupole component in
the dipole), and writing p=L/6, we have:

3
&y = C’q;/{%) &’ p>>2f>>1/2
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FODO lattice - natural emittance

We have derived an approximate expression for the natural emittance of a
lattice consisting entirely of FODO cells:

Notice how the emittance scales with the beam and lattice parameters:
— The emittance is proportional to the square of the energy.

— The emittance is proportional to the cube of the bending angle.
Increasing the number of cells in a complete circular lattice reduces
the bending angle of each dipole, and reduces the emittance.

— The emittance is proportional to the cube of the quadrupole focal
length. Stronger quadrupoles have shorter focal lengths, and reduce
the emittance.

— The emittance is inversely proportional to the cube of the cell (or

dipole) length. Shortening the cell reduces the lattice functions, and
reduces the emittance.
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Recall that the phase advance in a FODO cell is given by:
r
27°

This means that a stable lattice must have: i >
L

cosp =1-

1

2

In the limiting case, 1 = 180 , and we have the minimum value for /1 f :%
Using our approximation:

el

this would suggest that the minimum emittance in a FODO lattice is given by:
&y = C "‘/hé}s

However, as we increase the focusing strength, the approximations we used
to obtain this simple form for g, break down...

S— .geffe’?son Lab s Thomas Jefferson National Accelerator Facility I

Operated by JSA for the U.S. Department of Energy  hitp//cas.web.cer.chicas/Germany2009/Lectures/PDF-WebMioiski-1.par USPAS, Hampton, VA, Jan. 17-28, 2011 67



FODO lattice - natural emittance oy

UNIVERSITY

Plotting the exact formula for 7/7,, as a function of the phase advance, we
find there is a minimum in the natural emittance, for u~ 137°.

L=Im, p=100m

10
Black line: exact formula
8
Red line: approximation,
a0
A 2 3
: L[, L )81
— . 2 3
I, 16 f Jo,
2 L
0.1 0.2 0.3 0.4 0.5
H/2m

It turns out that the minimum value the natural emittance in a FODO cell is
given by:
&, ~1.2C "0’
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A phase advance of 137° is quite high for a FODO cell. More typically,
beam lines are designed with a phase advance of 90° per cell.

For a 90° FODO cell:

r 1
COS AL, =1- ; == i:_
2f L 2
We are just in the regime where our approximation 4/>> L is valid; so in this

case.
%

- 2 ) - ]
£, ® (‘q;ﬁ[;] o = 2\/§c.'q;/-93

Using the above formulae, we estimate that a storage ring constructed from
16 FODO cells with 90 phase advance per cell, and storing beam at 2 GeV
would have a natural emittance of 125 nm.

Many modern applications (including light sources and colliders) demand
emittances one or two orders of magnitude smaller.

How can we design the lattice to achieve a smaller natural emittance?
A clue is provided if we look at the curly-H function in a FODO lattice...
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The curly-H function remains at a relatively constant value throughout the
lattice. Perhaps we can reduce it in the dipoles...

0.010 Windows NT 4.0 version8.23dl __ 24/07/07 14.27.06

Y

HX
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As a first attempt at reducing the natural emittance, let us try designing a
lattice that has zero dispersion at one end of each dipole. This can be
achieved using a double bend achromat (DBA) lattice.

-

322_50 Win[ciowslNTBﬁjt) vlerse}}; 8.l23df . ' ?4/07/’07|I7.32.12 0.20
Z2025] | .'ﬂ'- Lane
18.00- L 0.16
15.75 1 | 0,14
13.50 L0.12
11.25 - [ 0.70
9.00 - [ 0.08
6.75 - [ 0.06
450 [ 0.04
225 ] [ 0.0z
o2z 4 6 & W 1z [ =
s (m)
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First of all, let us consider the constraints needed to achieve zero dispersion
at either end of the cell.

Assuming that we start at one end of the cell with zero dispersion, then, by
symmetry, the dispersion at the other end of the cell will also be zero if the
central quadrupole simply reverses the gradient of the dispersion.

In the thin lens approximation, this condition can be written:

( 1 0']_(?71.]_ r”“'n | _( 7, ]
-1/f 1 17 s - pr—_]: - 1

Hence, the central quadrupole must have focal length: /= Ix

20,

The actual value of the dispersion is determined by the dipole bending angle
6, the bending radius p, and the drift length Z:

1. = p(1—cos@)+ Lsind 1, =sin@
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Is this type of lattice likely to have a lower natural emittance than a FODO
lattice? We can get an idea by looking at the curly-H function.

| \ll]]I[llllﬂIﬂll[ll—'—[lﬂll]]ll]ﬂl]]ﬂ]ﬂ

0.0040 Windows NT4 1] iermm 8. 2?:;‘1‘ 24fﬂ'7fﬂ7l 17.32.12
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O0g—= 7 g T F 1R AR

16.
s (m)

Note that we use the same dipoles (bending radius and length) for our
example in both cases (FODO and DBA). In the DBA lattice the curly-H
function is reduced by a significant factor, compared to the FODO lattice.
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Let us calculate the minimum natural emittance of a DBA lattice, for given
bending radius p and bending angle &in the dipoles.

To do this, we need to calculate the minimum value of:

1 J%d&

in one dipole, subject to the constraints:

Mo :rt’po =0

where 1, and ,, are the dispersion and the gradient of the dispersion at the
entrance of a dipole.

We know how the dispersion and the Twiss parameters evolve through the
dipole, so we can calculate / for one dipole, for given initial values of the
Twiss parameters «, and f,.

Then, we simply have to minimise the value of I, with respect to ¢, and £,.

Again, the algebra is rather formidable, and the full expression for /; is not
especially enlightening...
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DBA lattice - natural emittance

We find that, for given p and 6 and with the constraints:
Mo =10 =0
the minimum value of  is given by:
1 6

S.min E; + 0(96 )

which occurs for values of the Twiss parameters at the entrance to the
dipole:

!

fi=\TL+0)  a,=15-0(0")

where L = pfis the length of a dipole.

Since: 1 J2
I, =I —ds =—
P P
we can immediately write an expression for the minimum emittance in a
DBA lattice...
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! 1

2 + 5 min
"

E = ~
0.DBA4,min q/ jx ]2 4 ‘\/E

~ .23
C,re

The approximation is valid for small 6. Note that we have again assumed
that, since there is no quadrupole component in the dipole, j. = 1.

Compare the above expression with that for the minimum emittance in a
FODO lattice:

i 203
é:'['J._FC)}:JG.111i11"""‘('q:y 6

The minimum emittance in each case scales with the square of the beam
energy, and with the cube of the bending angle of a dipole. However, the
minimum emittance in a DBA lattice is smaller than that in a FODO lattice

(for given energy and dipole bending angle) by a factor 4V15 ~ 15.5 .

This is a significant improvement... but can we do even better?
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We used the constraints:
o = 1po — 0

to define a DBA lattice; but to get a lower emittance, we can consider
relaxing these constraints.

If we relax these constraints, then we may be able to achieve an even lower
natural emittance.

To derive the “theoretical minimum emittance” (TME), we write down an
expression for:

I :J.i{T;ds

with arbitrary initial dispersion 7,, 1,,, and Twiss parameters ¢, and £ in a
dipole with given bending radius p and angle 6.

Then we minimise /5 with respect to variations in 7,, 1,4, &, and g,...

S— .{effé?son Lab s Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy  hitp://cas.web.cern.chicas/Germany2009/Lectures/PDF-WebMWolski-1.paf JSPAS, Hampton, VA, Jan. 17-28, 2011 77



0.
TDMINION

UNIVERSITY

TME lattice - natural emittance

The result is:

1 2 3
g min X Cy 0
0.TME, 12 ,'—1 5 q

The minimum emittance is obtained with dispersion at the entrance to a
dipole:

?%=éL9+O(ﬂ nw=—§+0wﬂ

and with Twiss functions at the entrance:

8 3 T 2
ﬂo—ﬁL+O(9) a, =15 +0(6%)

S— .geff;?son Lab s Thomas Jefferson National Accelerator Facility I

Operated by JSA for the U.S. Department of Energy  hiip//cas.web.cer.chicas/Germany2009/Lectures/PDF-WebMioiski-1.par USPAS, Hampton, VA, Jan. 17-28,2011 78



TME lattice - natural emittance Oy

UNIVERSITY

Note that with the conditions for minimum emittance:

7, =éL9+ 0(6°) 7,0 = —§+ 0(6%)
B, =%L +0(#°) a, =V15+0(6*)

the dispersion and the beta function reach a minimum in the centre of the
dipole. The values at the centre of the dipole are:

sin2\ L@
=pl -2 |= +0le*
l’?I.T.llll p( 9 ] 24 ( )

L
ﬂmin - 2\/6

What do the lattice functions look like in a single cell of a TME lattice?

+0(6°)

Because of symmetry in the dipole, we can consider a TME lattice cell as
containing a single dipole (as opposed to two dipoles, which we had in the
cases of the FODO and DBA Iattices)...
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l

)

ILC Damping Ring (OCS)
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Note: the lattice shown in this example does not actually achieve the exact conditions
needed for absolute minimum emittance. A more complicated lattice would be

needed for this. ..
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Summary: FODO, DBA and TME lattices

Lattice Style Minimum Emittance Conditions
1
& ::25(.”293 i:_
90 FODO 0 g/ I 5
Minimum ) o
emittance g = 1.2C, 770 =137
FODO
1 5 ,?0 — )?po = 0
DBA Ey X — qu/ %
W15 B, ~J12/5L  «a,~+15
TME &y = C Y ‘6 f?min ~ p)min =
" 12415 ! 24 2415

Note: the approximations are valid for small dipole bending angle, 6.

—— Qeffé?son Lab s

Operated by JSA for the U.S. Department of Energy  hitp://cas.web.cern.chicas/Germany2009/Lectures/PDF-WebMWolski-1.paf JSPAS, Hampton, VA, Jan. 17-28, 2011

Thomas Jefferson National Accelerator Facility

W

0.
TDMINION

UNIVERSITY

81



Design for low emittance lattices oy
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The results we have derived have been for "ideal" lattices that perfectly achieve the
stated conditions in each case.

In practice, lattices rarely, if ever, achieve the ideal conditions. In particular, the beta
function in an achromat is usually not optimal for low emittance; and the dispersion
and beta function in a TME lattice are not optimal.

The main reasons for this are:

— It is difficult to control the beta function and dispersion to achieve the ideal low-
emittance conditions with a small number of quadrupoles.

— There are other strong dynamical constraints on the design that we have not
considered: in particular, the lattice needs a large dynamic aperture to achieve
a good beam lifetime.

The dynamic aperture issue is particularly difficult for low emittance lattices. The
dispersion in low emittance lattices is generally low, while the strong focusing leads to
high chromaticity. Therefore, very strong sextupoles are often needed to correct the
natural chromaticity. This limits the dynamic aperture.

The consequence of all these issues is that in practice, the natural emittance of a
lattice of a given type is usually somewhat larger than might be expected using the
formulae given here.
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The natural emittance in a storage ring is determined by the balance between the
radiation damping (given by 7,) and the quantum excitation (given by I;).

The quantum excitation depends on the lattice functions. Different "styles" of lattice
can be used, depending on the emittance specification for the storage ring.

In general, for small bending angle & the natural emittance can be written as:

&, = FC,y*6°

where @is the bending angle of a single dipole, and the numerical factor F is

determined by the lattice style:

Lattice style F

90 FODO 22
180 FODO 1
Double-bend achromat (DBA) 1/4\/E

Multi-bend achromat

(M +1)/12415 (M 1)

Theoretical minimum emittance (TME)

1/124/15
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Achromats have been popular choices for storage ring lattices in third-
generation synchrotron light sources for two reasons:

— they provide lower natural emittance than FODO lattices;

— they provide zero-dispersion locations appropriate for insertion
devices (wigglers and undulators).

Light sources using double-bend achromats (e.g. ESRF, APS, SPring-8,
DIAMOND, SOLEIL...) and triple-bend achromats (e.g. ALS, SLS) have

been built.

Increasing the number of bends in a single cell of an achromat ("multiple-
bend achromats") reduces the emittance, since the lattice functions in the
"central" bends can be tuned to conditions for minimum emittance.

"Detuning" an achromat to allow some dispersion in the straights provides
the possibility of further reduction in natural emittance, by moving towards
the conditions for a theoretical minimum emittance (TME) lattice.
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