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Course Outline

« Course Content

e Introduction to Accelerators and Short Historical Overview
Basic Units and Definitions
Lorentz Force
Linear Accelerators
Circular Accelerators

« Particle Motion in EM Fields
Magnetic Multipoles
Linear Beam Dynamics
Periodic Systems
Nonlinear Perturbations

Coupled Motion
.!e ffegon Lab Thomas Jefferson National Accelerator Facility @ &JSA
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» Synchrotron Radiation
Radiation Power and Distribution
Insertion Devices
X-ray Sources
Free Electron Lasers
* Technical Components
Particle Acceleration Cavities and RF Systems
Spin and Spin Manipulation
* Collective Effects
Particle Distributions
Vlasov Equation
Self-consistent Fields

; Thomas Jefferson National Accelerator Facili R &
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Landau Damping
Beam-Beam Effects
e Relaxation Phenomena
Radiation Damping
Toushek effect/IBS
Beam Cooling

g Thomas Jefferson National Accelerator Facili
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 When a particle is accelerated, 1.e., its energy is changed

by an electromagnetic field, it must have fallen through an

Electric Field (we show later by very general arguments

that Magnetic Fields cannot change particle energy). For

electrostatic accelerating fields the energy change 1s

AE:QACDZQ(CDa_q)b)

g charge, @, the electrostatic potentials before and after the
motion through the electric field. Therefore, particle energy
can be conveniently expressed in units of the “equivalent”
electrostatic potential change needed to accelerate the
particle to the given energy. Definition: 1 €V, or 1 electron
volt, 1s the energy acquired by 1 electron falling through a
one volt potential difference.

Energy Units

g Thomas Jefferson National Accelerator Facili N
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Energy Units
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1eV=16x10"Cx 1V =1.6x10"1]
1 MeV=10°eV=1.6x10"1]

To convert rest mass to eV use Einstein relation
2
E,=mc

where m 1s the rest mass. For electrons

E

electron,

=9.1x10™" kg (3x10° m/sec) =81.9x107° J
=0.512 MeV
Recent “best fit” value 0.51099906 MeV

g Thomas Jefferson National Accelerator Facili
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Some Needed Relativity

Following Maxwell Equations, which exhibit this symmetry,
assume all Laws of Physics must be of form to guarantee the
invariance of the space-time interval

(ct')2 —x'z—y'z—z'z =(Ct)2 52 _yz _ 2

Coordinate transformations that leave interval unchanged are the
usual rotations and Lorentz Transformations, e.g. the z boost

ct':y(ct—,ﬁz)
x'=x
y'=y
Z'=7/(z—,6’ct)

g Thomas Jefferson National Accelerator Facili N
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Relativistic Factors

where, following Einstein define the relativistic factors

5.1

C
1

Yy =
J1-

Easy way to accomplish task of defining a Relativistic
Mechanics: write all laws of physics 1n terms of 4-vectors and 4-
tensors, 1.€., quantities that transform under Lorentz
transformations in the same way as the coordinate differentials.

B =

o | <

g Thomas Jefferson National Accelerator Facili 5 =
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Four-vector transformation under z boost Lorentz Transformation

vo'zy/(vo—,ﬁv3)

Four-vectors

V= 7/(\/3 _,Bvo)
Important example: Four-velocity. Note that interval

dr =+|1- B*dt

Lorentz invariant. So the following 1s a 4-vector
, [dct dx dy dz

cu = ” ” 9 :Cy(lﬂleNBy’IBZ)
dr dr dr dr

g Thomas Jefferson National Accelerator Facili 5 =
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4-Momentum

Single particle mechanics must be defined in terms of Four-
momentum

p* =meu® =mey(LB,.B,. B.)

Norms, which must be Lorentz invariant, are

Juu® =14 p p“ =mc

What happens to Newton’s Law F = md = dp/dt?

dp® .

ar
But need a Four-force on the RHS!!!

g Thomas Jefferson National Accelerator Facili 5 =
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Non-relativistic

—

F=gqg (E +VXxB )
Relativistic Generalization (v summation implied)
FO( — qFaVMV

Electromagnetic Field

(0 E. E, E )
E 0 cB —cB
FO( — X “ Y
" |E, —cB, 0 cB,
\EZ CBy _CBX O /

g Thomas Jefferson National Accelerator Facili N
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Energy Exchange Equation (Note: no magnetic field!)

ﬂ_qﬁoff

dt mc’

Relativistic Lorentz Force Equation (you verify in HW!)

d (7/mT/)
dt

:q(E—FVXE)

; Thomas Jefferson National Accelerator Facili R &
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Methods of Acceleration

« Acceleration by Static Electric Fields (DC) Acceleration
— Cockcroft-Walton
— van de Graaf Accelerators

— Limited by voltage breakdowns to potentials of under a
million volts in 1930, and presently to potentials of tens of
millions of volts (in modern van de Graaf accelerators). Not
enough to do nuclear physics at the time.

« Radio Frequency (RF) Acceleration

— Main means to accelerate in most present day accelerators
because one can get to 10-100 MV 1n a meter these days.
Reason: alternating fields don’t cause breakdown (if you are
careful!) until much higher field levels than DC.

— Ideas started with Ising and Wideroe

g Thomas Jefferson National Accelerator Facili N
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Proton Source at Fermilab, Beam Energy 750 keV

' Thomas Jefferson National Accelerator Facili /
.getfzzon Lab v e @SA

USPAS Accelerator Physics Jan. 2011
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"“1% Brookhaven

A% | Tandem
¢7 van de Graaf
]~ 1SMV

Tandem trick multiplies
the output energy

Thomas Jefferson National Accelerator Facili
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Prinzip einer Methode zur Herstellung von Kanalstrahlen hoher Voltzahl’ (in
German), Arkiv for matematik o. fysik, 18, Nr. 30, 1-4 (1924).

Thomas Jefferson National Accelerator Facili
.!effezon Lab v @ @JSA

USPAS Accelerator Physics Jan. 2011



W
ODU

Drift Tube Linac Proposal

J A by
W’-ﬁ%-ﬁuﬂ ?‘35'5"'}";_9"-1{1 L A

— A .

-'—:-z;':ri'Ffé,

Idea Shown in Wideroe Thesis

Thomas Jefferson National Accelerator Facili ‘
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Wideroe Thesis Experiment

Uber ein neues Prinzip zur Herstellung hoher Spannungen, Archiv fiir Elektrotechnik 21, 387 (1928)

(On a new principle for the production of higher voltages)

4eff _Eon ™ Thomas Jefferson National Accelerator Facility @ QJSA
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Fug. 1. Lhagram of apparatus.

The Production of Heavy High Speed Ions without the Use of High Voltages
David H. Sloan and Ernest O. Lawrence Phys. Rev. 38, 2021 (1931)

= Thomas Jefferson National Accelerator Facili
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» The first large proton drift tube linac built by Luis Alvarez
and Panofsky after WW II

(1945-1955) Alvarez Proton Linac

Alvarez Drift Tube Linac
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A
Frc. 2. Linear accelerator produced by introducing drift tubes into

cavity excited as in Fig. 1. Division into unit cells.

Alvarez, Bradner, Frank, Gordon, Gow, Marshal, F. Oppenheimer. Panofsky.
Richman, and Woodyard. Rev. Sci. Instrum., 26, 111-133, (1955)

Thomas Jefferson National Accelerator Facili
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Germ of Idea*
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*Stated in
E. O. Lawrence
Nobel Lecture
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LLawrence’s Question

« Can you re-use “the same” accelerating gap many times?

—

F =md=qVxB B ®

d’ B d’
. > \;x—I—QiVx:O

> m 7 dt
d’ B d*v
dtzy:—q—vx > dtzy +Qv, =0
m
d , .\ _¢gB S
E(Vx+vy)=;(vxvy—vyvx)=0

V, = \/Vi (t) + Vi (t) 1S a constant of the motion

; Thomas Jefferson National Accelerator Facili D
.!effer%on Lab o @ &JSA

USPAS Accelerator Physics Jan. 2011



W

Cyclotron Frequency
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v, (1) =vycos(Qit+0);v, (1) =—v,sin(Qt+7)

qa:%+£%m@ywapwa;%+§wm@y+@

c C
The radius of the oscillation » = v /Q. 1s proportional to the velocity
after the gap. Therefore, the particle takes the same amount of time to
come around to the gap, independent of the actual particle energy!!!!
(only 1n the non-relativistic approximation). Establish a resonance
(equality!) between RF frequency and particle transverse oscillation
frequency, also known as the Cyclotron Frequency

qB
2mTm

2 Thomas Jefferson National Accelerator Facili \
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U. S. Patent Diagram
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Lawrence and “His Boys”
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L-G: Jeek Livingood, Frank Exner, M.5.Livingston, Devid Slosn, E.0.Lawrence, Milton White,
Wesley Coates, L.Jackson Laslett and Commander T. Luecel - 1933

Thomas Jefferson National Accelerator Facili ‘
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Radiation Laboratory 60 Inch Cyclotron, circa 1939
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88 Inch Cyclotron at Berkeley Lab Aldg
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Relativistic Corrections

When include relativistic effects (you’ll see in the HW!) the
“effective” mass to compute the oscillation frequency is the
relativistic mass ym

qB

f,=Q. 12r =
2rym

where y 1s Einstein’s relativistic y, most usefully expressed as

2
7/ — Ez‘ot — EO +Ekin — mc +Ekin

E, E, mc’

m particle rest mass, £, particle kinetic energy

g Thomas Jefferson National Accelerator Facili D —
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PHOTON beam
A

modified PROTON beam
250MeV

native PROTON beam
250MeV

0 10 20 30
Depth in Tissue (cm)

Thomas Jefferson National Accelerator Facility @ QJSA
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Betatrons

25 MeV electron accelerator with its inventor: Don Kerst. The
earliest electron accelerators for medical uses were betatrons.

) Thomas Jefferson National Accelerator Facili
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USPAS Accelerator Physics Jan. 2011



300 MeV ~ 1949
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Electromagnetic Induction

Faraday’s Law: Differential Form of Maxwell Equation

VxE——@—B

Ot

Faraday’s Law: Integral Form

m% X E = —m —.dS
< < Of
Faraday’s Law of Induction

J|E-dl =27RE, = —%@B

g Thomas Jefferson National Accelerator Facility
J)effegon Lab USPAS Accelerator Physics Jan. 2011
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Pfin";f"" Secondary
winding winding
Mo Burnes N, turms
Primary
current
Secondary
I Ig currant
Priamiary
voltage

Thomas Jefferson National Accelerator Facili
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Betatron as a Transformer

 In the betatron the electron beam itself 1s the secondary
winding of the transformer. Energy transferred directly to
the electrons

27RE, = —%@B

« Radial Equilibrium
C
R = p

eB/ym
* Energy Gain Equation
dy eE,[fc
dt mc”

; Thomas Jefferson National Accelerator Facili D
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Betatron condition
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To get radial stability in the electron beam orbit (i.e., the orbit
radius does not change during acceleration), need

dB Bdy B cm
= and — =
dt y dt y eR

d ec 1 do
®, = arR’B for some a and LN . L= a=2
dt  mc’ 2zR dt
.. ®,=27R*B(r=R)
This last expression 1s sometimes called the “betatron two for
one” condition. The energy increase from the flux change 1s

q5¢ _AD
21 Rmc

g Thomas Jefferson National Accelerator Facili N
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Transverse Beam Stability Wy
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Ensured by proper shaping of the magnetic field in the betatron

Thomas Jefferson National Accelerator Facility e ngA
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Relativistic Equations of Motion
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Standard Cylindrical Coordinates
+7 B
ﬂ:i({,xg) v _on
\ = dt ym dt
Iz — )
0 6 r2:x2—|—y2
X r x=rcosf y=rsiné
F=cosO%+sin@p O=—sinOx+coshy
v =V-i=F  v,=v-0=r0
dv d . A 2 — 00
—VZ—(V,,I”-I-VHH) dr/dt =600
dt dt

d0/dt = —6r

g Thomas Jefferson National Accelerator Facili N
.!effer%on Lab o @ @J‘C‘A
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Cylindrical Equations of Motion

In components

Zero’th order solution
r(t) =cons = R
0(t)=6,+6t z(t)=0

g Thomas Jefferson National Accelerator Facili
.!effer%on Lab v
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Magnetic Field Near Orbit

Get cyclotron frequency again, as should

_qBZ(r:R,Z:O)

0, = =Q
ym
Magnetic field near equilibrium orbit
- OB OB
B(r,z)U Bz+—~(r—R)r+—=(r—-R)z+
()0 B2+ (= R) 7+ 5 (- R)
0B. . OB. .
—Zr+—=zzZ
Oz Oz
VxB=0 >aBZ:aB” ?-EzO,B,,:O >8BZ:O
or Oz Oz

; Thomas Jefferson National Accelerator Facili D
.!effer%on Lab " @ &JSA
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Field Index
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Magnetic Field completely specified by its z-component on the
mid-plane

. . 0B

B(r,z)

r—R)z+ zr
ar ( ) :I
Power Law model for fall-off

B (r,z=0)0B,(R/r)

The constant n describing the falloff is called the field index

B(r,z)U B z—% (r—R)Z+zF |

g Thomas Jefferson National Accelerator Facili
J)effer%on Lab o @ @JSA
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Assume particle orbit “close to” or “nearby” the unperturbed orbit
or(t)=r(t)-R 060(t)=0(t)-Qt 6z(t)=z(¢)

B B
B.~B, —n]TO&r B z—"?o

Linearized Equations of Motion

0z

it — 5rQ> —2RQ 56 =L [&QCBO +RSOB, — RQ. ”% 54
ym

RSO +267Q, = 57Q — ROO+ 6rQ, = const

B
55 =L RO T0 5z = Q252
ym R

g Thomas Jefferson National Accelerator Facili N
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“Weak” Focusing

For small deviations from the unperturbed circular orbit the
transverse deviations solve the (driven!) harmonic oscillator
equations

67 +(1-n)Q.6r = Q const
57 +nQ’5z=0

The small deviations oscillate with a frequency n'2Q_in the
vertical direction and (1 — n)'? Q_ in the radial direction.
Focusing by magnetic field shaping of this sort 1s called Weak
Focusing. This method was the primary method of focusing in
accelerators up until the mid 1950s, and 1s still occasionally
used today.

Thomas Jefferson National Accelerator Facility @ @jSA

USPAS Accelerator Physics Jan. 2011
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Stability of Transverse Oscillations \Lid4
ODU

* For long term stability, the field index must satisfy

O<n<l

because only then do the transverse oscillations remain
bounded for all time. Because transverse oscillations in
accelerators were theoretically studied by Kerst and Serber
(Physical Review, 60, 53 (1941)) for the first time 1n
betatrons, transverse oscillations in accelerators are known
generically as betatron oscillations. Typically » was about
0.6 1n betatrons.

; Thomas Jefferson National Accelerator Facili R &
.!effer%on Lab v @ &JSA
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Physical Source of Focusing

0<n
/%/3 B, changes sign as go
\L/L through mid-plane. B,
weaker as 7 increases

n<l

Bending on a circular orbit 1s naturally focusing in the bend
direction (why?!), and accounts for the 1 in 1 — n. Magnetic
field gradient that causes focusing in z causes defocusing in
r, essentially because 0B_/0r=0B./0z . For n> 1, the
defocusing wins out.

g Thomas Jefferson National Accelerator Facili 5 =
.!effer%on Lab " @ &JSA
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First Look at Dispersion

Newton’s Prism Experiment

A
7 screen Ax=D [—pj
P
violet
. Ic A
prism d Ax =17 ( ap )
P

Dispersion units: m
Bend Magnet as Energy Spectrometer
position sensitive

material

High energy

Low energy

Bend magnet

g Thomas Jefferson National Accelerator Facili
J)effer%on Lab o @ @JSA
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Radial Equilibrium

R=_Pc __p
eB/ym eB

Linearized

(R+AR)(B, +AB) =227 L RB + RAB+ARB,

e
& —nARB, + ARB, = (1-n)ARB,
e
Ap AR R
—=(l-n)——>D
» ( n) R — radial — (l_n)

; Thomas Jefferson National Accelerator Facili R &
.!effer%on Lab v @ &JSA
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57 +(1-n)Q.6r =Q const
For a time independent solution or = AR (orbit at larger radius)
(1 — n)QfAR = (2 const
Ap
P

¢ radial

const—(l n)QD Ap = R—
P

General Betatron Oscillation equations

A

or + (1 n)Q25r =Q’R— P
Sz +nQ’6z=0

g Thomas Jefferson National Accelerator Facili N
.!effer%on Lab o @ @J‘C‘A
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No Longitudinal Focusing
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RSO+Q S5r=Q R ap
p
0=0,+Q.t+| o X _q AR,
P R _
:90+Qct+J‘QCA—p{1—L}dt
p l—n

[\

Greater Weaker
Speed Field

; Thomas Jefferson National Accelerator Facili R &
.!effer%on Lab acility @ &JSA
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Classical Microtron: Veksler (1945) '_""
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Extraction

X Magnetic
[=2 Field

RF Cavity H

Thomas Jefferson National Accelerator Facili ‘
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Basic Principles
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For the geometry given

LTmY)  e[E+vxE]

dt
d(ymy,) =ev B,
dt g
d
(ymv,) = —ev B,
dt
2 Q2 d2 2
d\;““ v, =0 Vy+Q"V:O
dt y dtz 7/2 Yy

For each orbit, separately, and exactly

v .(0)=-v,c08(Q.t/y) v, (1)=v,sin(Q.t/y)

x(t)—— Q sin (Q t/y)  y(@)= W"O 72;"0008(9 tly)

c C c

g Thomas Jefferson National Accelerator Facili
J)effer%on Lab o @ @JSA

USPAS Accelerator Physics Jan. 2011



W
Q. =2nf =eB_/m ODU

Non-relativistic cyclotron frequency:
Relativistic cyclotron frequency: Q. [y

Bend radius of each orbit is: O, =YV, !Q, —=>yclQ,

In a conventional cyclotron, the particles move in a circular orbit that
grows in size with energy, but where the relatively heavy particles stay
in resonance with the RF, which drives the accelerating DEEs at the
non-relativistic cyclotron frequency. By contrast, a microtron uses the
“other side” of the cyclotron frequency formula. The cyclotron
frequency decreases, proportional to energy, and the beam orbit radius
increases in each orbit by precisely the amount which leads to arrival of
the particles in the succeeding orbits precisely in phase.

g Thomas Jefferson National Accelerator Facili
J}effegon Lab o @ @JSA
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Microtron Resonance Condition

Must have that the bunch pattern repeat in time. This condition
is only possible if the time it takes to go around each orbit is
precisely an integral number of RF periods

J. e
V= MU Ay =v
fRF fRF
_ , Each Subsequent
First Orbit Orbit
For classical microtron ey /.
assume can inject so that 1 oF
fc ~ 1
Srr H =V
.!e ffegon Lab Thomas Jefferson National Accelerator Facility

USPAS Accelerator Physics Jan. 2011
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The energy gain in each pass must be identical for this resonance to be
achieved, because once f./fp 1s chosen, Ay is fixed. Because the energy gain of
non-relativistic ions from an RF cavity IS energy dependent, there is no way
(presently!) to make a classical microtron for ions. For the same reason, in
electron microtrons one would like the electrons close to relativistic after the
first acceleration step. Concern about injection conditions which, as here in the
microtron case, will be a recurring theme in examples!

Parameter Choices

2rmce
fc/fRF:Bz/BO BOZT
e

B, =0.107 T =1.07 kG@10cm

Notice that this field strength is NOT state-of-the-art, and that one normally
chooses the magnetic field to be around this value. High frequency RF is
expensive too!

g Thomas Jefferson National Accelerator Facili 5 =
.!effer%on Lab " @ &JSA
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Classical Microtron Possibilities

qwérr

Assumption: Beam injected at low energy and energy gain is the same for each paQDU

| 1/2 1/3 1/4
23 V.)}’IDA“ /:"7"/'9”1 A}/ 25 V'aj/laAﬂ H)'/)/’
24 173 (3 42143, 5’
| | |
3,2,3,2 4,2,2,2 5,2, 5/3, 0, 2, 3/2,
2 2
4,3,4,3 5,3,5/2,3 6,3,2,3 7,3, 7/4,
3
5,4,5,4 6,4,3,4 7,4,7/3, 8,4,2,4
4

.!effér%on Lab
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For same microtron magnet, no advantage to higher n; RF 1s more expensive ODU
because energy per pass needs to be higher

Extraction
X Magnetic
Field
Y
X
RF Cavity p=3
v=2

Thomas Jefferson National Accelerator Facili ‘
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Going along diagonal changes W
To deal with lower frequenciesf&@ﬁugaggéy ODU

Extraction
X Magnetic
Field
Y
X
RF Cavity p=4
VvV =

Thomas Jefferson National Accelerator Facili
.!effezon Lab v @ @JSA
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Phase Stability \hilds

I
Invented independently by Veksler (for microtrons!) and McMillan ODU

V.@)

A
A 4

(u+A=D)v)/ frp

ey T
Uy f

~ U fr

Electrons arriving EARLY get more energy, have a longer path, and arrive
later on the next pass. Extremely important discovery in accelerator
physics. McMillan used same idea to design first electron synchrotron.

g Thomas Jefferson National Accelerator Facili
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Generic Modern Synchrotron  ps
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Spokes are user stations for this X-ray ring source

: Thomas Jefferson National Accelerator Facili
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USPAS Accelerator Physics Jan. 2011



W

Synchrotron Phase Stability
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Edwin McMillan discovered phase stability independently of
Veksler and used the 1dea to design first large electron synchrotron.

O b S
AN (™
Ju U
1 e 1
h=Lf,. | fBc Harmonic number: # of RF

oscillations 1n a revolution

g Thomas Jefferson National Accelerator Facili N
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Beam energy where speed increment effect balances path length
change effect on accelerator revolution frequency. Revolution
frequency independent of beam energy to linear order. We will
calculate in a few weeks

Transition Energy

e Below Transistion Energy: Particles arriving EARLY get less acceleration
and speed increment, and arrive later, with repect to the center of the bunch,
on the next pass. Applies to heavy particle synchrotrons during first part of
acceleration when the beam 1s non-relativistic and accelerations still
produce velocity changes.

® Above Transistion Energy: Particles arriving EARLY get more energy, have
a longer path, and arrive later on the next pass. Applies for electron
synchrotrons and heavy particle synchrotrons when approach relativistic
velocities. As seen before, Microtrons operate here.

g Thomas Jefferson National Accelerator Facili 5 =
.!effer%on Lab " @ &JSA
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Ed McMillan
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Vacuum chamber for
electron synchrotron
being packed for shipment
to Smithsonian

_r!ef'izon i Thomas Jefferson National Accelerator Facility e gJSA
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Full Electron Synchrotron

Thomas Jefferson National Accelerator Facility
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GE Electron Synchrotron Wy
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r"
5 éf.

Elder, F. R.; Gurewitsch, A. M.; Langmuir, R. V.; Pollock, H. C., "Radiation from
Electrons in a Synchrotron" (1947) Physical Review, vol. 71, Issue 11, pp. 829-830
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Cosmotron (First GeV Accelerator) uwm
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6/15/50 Neg. No. 6-151-0
View of Cosmotron Magnet Blocks after Leveling and
Spacing

; Thomas Jefferson National Accelerator Facili
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BNL Cosmotron and Shielding

_._|,L| - .

Thomas Jefferson National Accelerator Facility
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Cosmotron Magnet
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\ /

_____

¥ I 1 -IF
Eﬂi ! 5.0° 935" oo

3 :__:J 1
% f& h\‘ﬁ F'II:II-H ﬂ % l"'.‘
\ ;

The Cosmotron magnet

Sl
7

N/

6/13/49 . No. 6-10k-9
Modelofkrm;genenbufﬂmotronhbmetmacks Codl b d
Winding and Vacuum Chamber
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Cosmotron People

E. Courant -Latoce Desigaer

Siam Livingston - ooy

: Thomas Jefferson National Accelerator Facili
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Snvder -thearist

Chrivtoflos - invencor
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Bevatron
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i —

e ——

LT T T

Designed to discover the antiproton; Largest Weak Focusing Synchrotron

' Thomas Jefferson National Accelerator Facili
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Strong Focusing

« Betatron oscillation work has showed us that, apart from
bend plane focusing, a shaped field that focuses in one
transverse direction, defocuses in the other

* Question: 1is 1t possible to develop a system that focuses in
both directions simultaneously?

« Strong focusing: alternate the signs of focusing and
defocusing: get net focusing!!

R
\‘/ A Order doesn’t

W//ﬁ matter
JAN /

g Thomas Jefferson National Accelerator Facili
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Linear Magnetic Lenses: Quadrupoles s

r'
'
e i
Source: Danfysik Web site
Thomas Jefferson National Accelerator Facility
‘!Effgon Lab USPAS Accelerator Physics Jan. 2011
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Weak vs. Strong Benders
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Comment on Strong Focusing

Last time neglected to mention one main advantage of
strong focusing. In weak focusing machines, n < 1 for
stability. Therefore, the fall-off distance, or field gradient
cannot be too high. There 1s no such limit for strong
focusing.

nil 1

1s now allowed, leading to large field gradients and
relatively short focal length magnetic lenses. This tighter
focusing 1s what allows smaller beam sizes. Focusing
gradients now limited only by magnet construction issues
(pole magnetic field limits).

g Thomas Jefferson National Accelerator Facili
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First Strong-Focusing Synchrotron um
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Cornell 1 GeV Electron Synchrotron (LEPP-AP Home Page)
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Alternating Gradient Synchrotron (AGS)‘_""
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CERN PS
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25 GeV Proton Synchrotron

.!Eff- gon Lab Thomas Jefferson National Accelerator Facility @ @JSA
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CERN SPS
— r.r‘; % _ \\
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. 7 .
Eventually 400 GeV protons and antiprotons
Thomas Jefferson National Accelerator Facility JSA
..!Effgon Lab USPAS Accelerator Physics Jan. 2011 a g
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First TeV-scale accelerator; Large Superconducting Benders
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LEP Tunnel (Now LHC!)

Empty LHC

Thomas Jefferson National Accelerator Facili
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« Some modern accelerators are designed not to “accelerate”™
much at all, but to “store” beams for long periods of time
that can be usefully used by experimental users.

Storage RiIngs

— Colliders for High Energy Physics. Accelerated beam-
accelerated beam collisions are much more energetic
than accelerated beam-target collisions. To get to the
highest beam energy for a given acceleration system
design a collider

— Electron storage rings for X-ray production: circulating
electrons emit synchrotron radiation for a wide variety
of experimental purposes.

g Thomas Jefferson National Accelerator Facili N
.!effer%on Lab o @ @J‘C‘A
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Princeton-Stanford Collider

B Prllwetnn-‘-itanturll CBX - 19618

'11.1
: I

Thomas Jefferson National Accelerator Facility
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Eventually became leading synchrotron radiation machine
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Cornell 10 GeV ES and CESR
e

Thomas Jefferson National Accelerator Facility
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SLAC’s PEP |1 B-factory u
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PEP-II
Rings ™

Positrons

Low Energy Ring
BABAR Detector

; Thomas Jefferson National Accelerator Facili
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ALADDIN at Univ. of Wisconsin %22
ODU

o
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VUYV ring “uncovered”

Thomas Jefferson National Accelerator Facility
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_. --i\* |

Booster
synchrotron

Diagnostic Insertion

"™ _beamline device
. L
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Argonne APS
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Comment on Strong Focusing

Last time neglected to mention one main advantage of
strong focusing. In weak focusing machines, n < 1 for
stability. Therefore, the fall-off distance, or field gradient
cannot be too high. There 1s no such limit for strong
focusing.

nil 1

1s now allowed, leading to large field gradients and
relatively short focal length magnetic lenses. This tighter
focusing 1s what allows smaller beam sizes. Focusing
gradients now limited only by magnet construction issues
(pole magnetic field limits).

g Thomas Jefferson National Accelerator Facili
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Linear Beam Optics Outline
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« Particle Motion in the Linear Approximation
* Some Geometry of Ellipses
« Ellipse Dimensions in the f-function Description
e Area Theorem for Linear Transformations
* Phase Advance for a Unimodular Matrix
— Formula for Phase Advance
— Matrix Twiss Representation

— Invariant Ellipses Generated by a Unimodular Linear
Transformation

« Detailed Solution of Hill’s Equation

— General Formula for Phase Advance

— Transfer Matrix in Terms of f-function

— Periodic Solutions
e Non-periodic Solutions

— Formulas for p-function and Phase Advance
* Beam Matching

. Thomas Jefferson National Accelerator Facili D —
.!effer%on Lab o @ &JSA
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Fundamental Notion: The Design Orbit 1s a path in an Earth-
fixed reference frame, 1.e., a differentiable mapping from
[0,1] to points within the frame. As we shall see as we go on,
it generally consists of arcs of circles and straight lines.

o:[0,1] > R?

o - )?(G)z(X(G),Y(G),Z(G))
Fundamental Notion: Path Length

2 2 2
I — (éij+(§EJ +(ééjd6
do do do

g Thomas Jefferson National Accelerator Facili N
.!effer%on Lab o @ @J‘C‘A
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The Design Trajectory 1s the path specified in terms of the
path length in the Earth-fixed reference frame. For a
relativistic accelerator where the particles move at the
velocity of light, L, =ct, ..

s:[0,L_]—R’
s = )?(S) :(X(S),Y(S),Z(S))
The first step 1n designing any accelerator, 1s to specify

bending magnet locations that are consistent with the arc
portions of the Design Trajectory.

g Thomas Jefferson National Accelerator Facili 5 =
.!effer%on Lab " @ &JSA
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Betatron Design Trajectory

5:[0,27R] — R®

s — X(S):(Rcos(s/R),Rsin(S/R),O)

Use path length s as independent variable instead of ¢ in the
dynamical equations.

d 1 d
ds QR dt

g Thomas Jefferson National Accelerator Facili N
.!effer%on Lab o @ @J‘C‘A
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Betatron Motion in s

2
d f” +(1-n)Q25r :QiRA—p
dt p
2
d 522 +nQ25z=0
dt

U

d*sr (1-n) 1 Ap

+ or =——
ds’ R’ R p
2
ddiz—l—;z 0z=0
S

Thomas Jefferson National Accelerator Facility
USPAS Accelerator Physics Jan. 2011
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Bend Magnet Geometry

F

Rectangular Magnet of Length L

| =

p

FN ( L
o

6/2

Thomas Jefferson National Accelerator Facili
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Sector Magnet
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Bend Magnet Trajectory

For a uniform magnetic field

d(ymV) _

ODU

— _[E+VXB]
d(ymV)
) — gV B
dt 172y
d(ymV))
= =gV B
dt 1752y
2 2
d?+mm=0 d?%Q%:O
dt dt

For the solution satisfying boundary conditions: X (0) =0 14 (()) =V,.z

X (1) = q%(cos(ﬂct)—l) = p(cos(Q.r)-1) Q =¢B,/ym

p . :
(t) 2B s1n( ct) psm( ct)

y

g Thomas Jefferson National Accelerator Facili D —
.!effer%on Lab o @ &JSA
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Magnetic Rigidity

The magnetic rigidity is:

P

Bp = ‘By p‘ =
4]

It depends only on the particle momentum and charge, and 1s a convenient way to

characterize the magnetic field. Given magnetic rigidity and the required bend radius,

the required bend field is a simple ratio. Note particles of momentum 100 MeV/c

have a rigidity of 0.334 T m.

_ Normal Incidence (or exit)
Long Dipole Magnet Dipole Magnet

BL:Bp(Zsin(Q/Z)) BL:Bpsin(Q)

g Thomas Jefferson National Accelerator Facili
J)effer%on Lab o @ @JSA
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Natural Focusing in Bend Plane

«—— Perturbed Trajectory

Design Trajectory

Can show that for either a displacement perturbation or angular perturbation
from the design trajectory

g Thomas Jefferson National Accelerator Facili
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Quadrupole Focusing

g Thomas Jefferson National Accelerator Facili
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Hill’s Equation

ODU

Define focusing strengths (with units of m2)

d’x d’y
1 +kx(s)x:0 % +ky(s)y=0

Note that this is like the harmonic oscillator, or exponential for constant K, but more
general in that the focusing strength, and hence oscillation frequency depends on s

g Thomas Jefferson National Accelerator Facili
J)effer%on Lab o @ @JSA
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Energy Effects
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p(l+Ap/p)

o~

This solution is not a solution to Hill’s equation directly, but is a solution to the
inhomogeneous Hill’s Equations

d’x 1 B'(S)_ 1 Ap
— | ——+ X =

ds* | pi(s) Bp |  p(s)p

d’y |_1 _B'(S)_y: 1 Ap

ds* | p,(s) Bp |7 p(s)p

g Thomas Jefferson National Accelerator Facili
J}effegon Lab o @ @JSA
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The notion of specifying curves in terms of their path length
1s standard 1n courses on the vector analysis of curves. A
good discussion 1n a Calculus book 1s Thomas, Calculus and
Analytic Geometry, 4" Edition, Articles 14.3-14.5. Most
vector analysis books have a similar, and more advanced
discussion under the subject of “Frenet-Serret Equations”.
Because all of our design trajectories involve only arcs of
circles and straight lines (dipole magnets and the drift
regions between them define the orbit), we can concentrate
on a simplified set of equations that “only” involve the
radius of curvature of the design orbit. It may be worthwhile
giving a simple example.

Comment on Design Trajectory

g Thomas Jefferson National Accelerator Facili N
.!effer%on Lab o @ @J‘C‘A
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4-Fold Symmetric Synchrotron

X
s, =0 't 2 5]
y vertical
p
s s, =L+ pr/2
— X
12
Sg = 35, S,
. )
\ i/
S s, =28,

g Thomas Jefferson National Accelerator Facili
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Its Design Trajectory

(0,0,S)

(0,0,L)+p(cos((s —Sl)/p)—l,O,sin((s—sl)/p))
(-=p,0,L+p)+(s—s,)(-10,0)

(—L—p,O,L+p)+p(—sin((s—53)/,0),0,005((5—53)/,0)—1)

(—L—2,0,0,L)+(S—S4)(O,O,—l)

(—L—2p,0,0)+p(1—cos((s—55)/p),O,—sin((s—sS)/p))

(—L —p,O,—p) -I—(S —56)(1,0,0)
(—,O,O,—,O)-I—,O(Sin((S—S7)/,0),O,1—COS((S—S7)/,0))

.!effér%on Lab
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O<s< L=y,
5, <8<,
§, <8<S$,
§, <8<,
S, <8 <8,
S <8< S,
Se <85 <8,

s, <§<4s,

@



Inhomogeneous Hill’s Equations

Fundamental transverse equations of motion in particle
accelerators for small deviations from design trajectory

d*x

ds*

dzy

ds’

p radius of curvature for bends, B’ transverse field gradient
for magnets that focus (positive corresponds to horizontal
focusing), Ap/p momentum deviation from design
momentum. Homogeneous equation is 2" order linear

ordinary differential equation.

.!effér%on Lab
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Dispersion

From theory of linear ordinary differential equations, the general solution to the
inhomogeneous equation is the sum of any solution to the inhomogeneous
equation, called the particular integral, plus two linearly independent solutions
to the homogeneous equation, whose amplitudes may be adjusted to account for
boundary conditions on the problem.

x(S)pr (S)+ A x, (S)+Bxx2 (S) y(s)=yp (S)+ A,y (S)+ By, (s)

Because the inhomogeneous terms are proportional to Ap/p, the particular
solution can generally be written as

_ Ap _ Ap
xp(S)_Dx(S)? yp(S)_Dy(S)?
where the dispersion functions satisfy
2 / d2D '
dlzx+{ 21 +B(S):|Dx: 1 2y_|_|: 21 _B(S):|Dy: :
ds* [ pi(s)  Bp pls) ds® | pi(s) B p,(5)

g Thomas Jefferson National Accelerator Facili
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In addition to the transverse effects of the dispersion, there are important effects of(th)eDU
dispersion along the direction of motion. The primary effect is to change the time-of-

arrival of the off-momentum particle compared to the on-momentum particle which
traverses the design trajectory.

Ap ds
p p(s)

d(Az)=D(s)

M56:

Thomas Jefferson National Accelerator Facility @ @JSA

USPAS Accelerator Physics Jan. 2011
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Solutions Homogeneous Eqn.

Dipole

( x(s) ) :[ COS((S_Si)/p) psin((SSi)/p)J/ X(Si) )

\%(5) _sin((s—si)/p)/p cos((s—S,-)/P)

\X(S")

J J

Drift

dx = dx

CONNEO)
\g(s)/ [ ]de(sz))

- Thomas Jefferson National Accelerator Facility @ @ JSA
J’effegon Lab USPAS Accelerator Physics Jan. 2011 N =



Quadrupole in the focusing direction £ = B’/ Bp

cos(\/z(s — s, ))

4 x(S) A
dx

\ZZ;(S)/

. k sin(\/z(s—si))

sin(\/z(s—si))/\/z\
cos(\/z(s—si))

J

(x(s))

dx

\ds

Thin Focusing Lens (limiting case when argument goes to

zero!)

//x(s+€)\
dx

\g(S‘l‘g)

y

{

1
1/ f

0
1

|

(x(s—e))

dx (S—g)

\ ds y,

Thin Defocusing Lens: change sign of f

.!effér%on Lab
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Solutions Homogeneous Eqn.

Dipole

( x(s) ) :[ COS((S_Si)/p) psin((SSi)/p)J/ X(Si) )

\%(5) _sin((s—si)/p)/p cos((s—S,-)/P)

\X(S")

J J

Drift

dx = dx

CONNEO)
\g(s)/ [ ]de(sz))

- Thomas Jefferson National Accelerator Facility @ @ JSA
J’effegon Lab USPAS Accelerator Physics Jan. 2011 N =



Quadrupole in the focusing direction £ = B’/ Bp

/x(s)\ ( cos(\/E(S—S,-)) sin(\/z(s—si))/\/z\/x(si)\
dx = dx

\E(S)/ | —Vk sin(\/z(s —Si)) cos(\/E(S _Si)) = (50)

J\ ds Y,

Quadrupole in the defocusing direction k= B’/ Bp

[ x(s) ]{ cosh(ﬁ(s—Si)) sinh(\/_k(ssl))/\/_k]{ x(s,) ]
%(S) \/jsinh(\/j(s—si)) COSh(\/j(S_Si)) %(S")

g Thomas Jefferson National Accelerator Facili
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Transfer Matrices
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Dipole with bend ® (put coordinate of final position in solution)

@
\ds

Drift

.!effér%on Lab

/x(saﬁer)\[ cos(©)

—sin(@®)/ p

(Safter )

J

( X(Saﬁer) ) (1
dx - 0
\g(’gaﬁer )]

L

drift

1

J

psin (@)] ( X(Sbefore) )
cos(@)

d
Kd_:(sbefore )/

E (Sbefore ) )

d
= (Shepre)

\ ds y,

Thomas Jefferson National Accelerator Facility
USPAS Accelerator Physics Jan. 2011
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Quadrupole in the focusing direction length L

(x5 ) | [ cos (kL) sin(\/EL)/x/P (X(Spare)
ax (Saﬁe,,) ) - ksin(\/EL) COS(\/EL) ax (Sbefore))

\ds y I\ ds

Quadrupole in the defocusing direction length L

( x(Safter) 1 ( cosh(\/jL) sinh(\/jL)/\/j\ ( x(Sbefore) )
ax (Safter )) \\/j sinh (\/EL) COS (HL) ax (Sbefore )j

_ds I\ ds

Wille: pg. 71

. Thomas Jefferson National Accelerator Facility @ ngA
J’effegon Lab USPAS Accelerator Physics Jan. 2011 b 2



Thin Lenses

Thin Focusing Lens (limiting case when argument goes to
zero!)

( X(Slens —I—(C,') | 1 0 ( 'x(SlenS —5) |
dx :(—l/f 1] dx

\E(slens + 8)) \d_S(SlenS o 8))

Thin Defocusing Lens: change sign of f

g Thomas Jefferson National Accelerator Facili
J}effegon Lab v

USPAS Accelerator Physics Jan. 2011

@&



W

Composition Rule: Matrix Multiplication!

ODU

| Element 1 | Element 2 |

More generally
M, =MM, .MM,
Remember: First element farthest RIGHT
3 Thomas Jefferson National Accelerator Facility 20 —JSA
J)effegon Lab USPAS Accelerator Physics Jan. 2011 @ &



Some Geometry of Ellipses

Equation for an upright ellipse

—

) ODU

Bl

HEGR

N

y X

In beam optics, the equations for ellipses are normalized (by
multiplication of the ellipse equation by ab) so that the area of
the ellipse divided by 7 appears on the RHS of the defining

equation. For a general ellipse

Ax* +2Bxy+Cy* =D

Thomas Jefferson National Accelerator Facility
USPAS Accelerator Physics Jan. 2011

.!effér%on Lab

@



ODU

The area 1s easily computed to be

Area D

— o= Eqn. (1)
7 JAC-B’
So the equation 1s equivalently
'+ 2o+ B =¢
A B
y = , o= , and f = ¢
Jac-B JAC- B JAc- B

; Thomas Jefferson National Accelerator Facili D
.!effer%on Lab o @ &JSA
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When normalized in this manner, the equation coefficients
clearly satisfy

By —a’ =1

Example: the defining equation for the upright ellipse may be
rewritten in following suggestive way

éxkﬁqﬂ:abzg
a b

p=abandy=>b/a, note X =a=,pc, y.. =b=.y¢

g Thomas Jefferson National Accelerator Facili D —
.!effer%on Lab o @ &JSA
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General Tilted Ellipse m——
5 ODU

Needs 3 parameters for a complete y=sx
description. One way
b /

éxz—l—%(y—sx)z:ab:g / -

A

v

a

where s 1s a slope parameter, a 1s the maximum
extent 1n the x-direction, and the y-intercept occurs at £b, and again

¢ 1s the area of the ellipse divided by =

2
b 2 d \ a
—| 1+s> — |x° —2s 2 xy+—y° =ab=c¢
a b b b
i L @™
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Identify

b a’) a a
y=2[1+szb—2J, a=——s, P=—

Note that fy — o> = 1 automatically, and that the equation for
ellipse becomes

x° +(,By+ax)2 = P

by eliminating the (redundant!) parameter y

g Thomas Jefferson National Accelerator Facili
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USPAS Accelerator Physics Jan. 2011



Ellipse Dimensions in the g-function qqepp

Description ODU
(o
— L
Foma/ )|
I / x
aﬁﬁ
— a=/pel—

As for the upright ellipse X =APE, V.. =AVE
Wille: page 81

g Thomas Jefferson National Accelerator Facili N
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Area Theorem for Linear Optics

Under a general linear transformation

(x'\ B (MH M., \(x\
Y ) M, M, ) y )
an ellipse 1s transformed 1nto another ellipse. Furthermore, 1f

det (M) = 1, the area of the ellipse after the transformation is
the same as that before the transformation.

Pf: Let the initial ellipse, normalized as above, be

7/ox2 +20axy + /Boy2 = &

Thomas Jefferson National Accelerator Facility @ &JSA
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The transformed ellipse 1s

7“2 "‘20“)/4‘/8)’2 = &)

V= (M_l )121 Vo 2(M_1 )11 <M_1 )21 O+ (M_l )21 'BO
@ = (M_l )11 (M_l )12 Yo ((M_l )11 <M_1 )22 * (M_l )12 (M_l )21)050 * (M_l )21 (M_l )22 Po
p= (M) 7o+ 2(M7), (M), (M), 5,
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Because (verify!)

Br—a’ =(By,—o;)
(o), (o), (v, () =2 (7)) (v ) (1),
= (,8070 —oz(f)(detM‘1 )2

the area of the transformed ellipse (divided by ) 1s, by Eqn. (1)

Ama:g: &,
2 -1
T \/,807/0 -, ‘det M ‘

=g, | det M |

- Thomas Jefferson National Accelerator Facility @ @ JSA
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Tilted ellipse from the upright ellipse

In the tilted ellipse the y-coordinate is raised by the slope with
respect to the un-tilted ellipse

AL

ODU

b a »
}/O:;, QO:O’ ﬂozg, (M )21:—S
b a , a a
—+—5", a=——s, = —
PR pS P

Because det (M)=1, the tilted ellipse has the same area as the
upright ellipse, 1.e., € = &,.
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Any two-by-two unimodular (Det (M) = 1) matrix with
|'Tr M| <2 can be written 1n the form

(g L Jeostiars © 2 Jint

The phase advance of the matrix, u, gives the eigenvalues of the
matrix A = ¢** and cos u = (Tr M)/2. Furthermore fy—a*=1

Pf: The equation for the eigenvalues of M is

=M, +M,,)A+1=0
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Because M i1s real, both 4 and A* are solutions of the
quadratic. Because

A= Tf(zM ) ¢ i i-(Te(a)/2)

For |Tr M| <2, 4 4* =1 and so 4, , = e**. Consequently cos u
= (Tr M)/2. Now the following matrix 1s trace-free.

(Mu_Mzz M 1
12

M—((l) (l)j cos(,u)z 2

; Thomas Jefferson National Accelerator Facili R &
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Simply choose
a:Mu_Mzz B = M, 7/:_M21
2sinu sin 4 SIn

and the sign of u to properly match the individual matrix
elements with > 0. It is easily verified that fy — o> = 1. Now

, (1 0) a B
M _(O 1)(:03(2/1)1{ )s1n(2y)

and more generally

M :(1 ?jcos(nﬂ){ « P jsin(n,u)

0

Thomas Jefferson National Accelerator Facility @ & JSA
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Therefore, because sin and cos are both bounded functions,
the matrix elements of any power of M remain bounded as

long as |Tr (M)| < 2.

NB, in some beam dynamics literature it 1s (incorrectly!)
stated that the less stringent |Tr (M)| < 2 ensures boundedness
and/or stability. That equality cannot be allowed can be
immediately demonstrated by counterexample. The upper
triangular or lower triangular subgroups of the two-by-two
unimodular matrices, 1.e., matrices of the form

1 x) 1 0)
o) el

clearly have unbounded powers if |x| 1s not equal to 0.
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Significance of matrix parameters

Another way to interpret the parameters a, 5, and y, which
represent the unimodular matrix M (these parameters are
sometimes called the Twiss parameters or Twiss representation
for the matrix) 1s as the “coordinates” of that specific set of
ellipses that are mapped onto each other, or are invariant, under
the linear action of the matrix. This result is demonstrated in

Thm: For the unimodular linear transformation

(1 0) a B
M—(O 1)cos(y)+(_}/ _a)sm(y)

with |Tr (M)| < 2, the ellipses

g Thomas Jefferson National Accelerator Facili N
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are invariant under the linear action of M, where c 1s any
constant. Furthermore, these are the only invariant ellipses. Note
that the theorem does not apply to £/, because |Tr (£])| = 2.

Pf: The inverse to M 1s clearly

=y Jeosta( i

By the ellipse transformation formulas, for example
['= ,Bz(sin2 ,u);/ + 2(— S sin ,u)(cos U+ sin ,u)a + (cos U+ o sin ,u)z,B
= Bsin’ ,u(l +a2)—2,6’a2 sin® u+ Bcos’ u+ fa’sin® u
= (sinz,u + coszy)ﬁ =p
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Similar calculations demonstrate that o' = o and y’' = y. As det (M) =

1, ¢' = ¢, and therefore the ellipse 1s invariant. Conversely, suppose
that an ellipse 1s invariant. By the ellipse transformation formula,

the specific ellipse , ,
VX T 2ai'xy+ /Biy =&

1s invariant under the transformation by M only 1f

Vi ) (cos U —asin ,u)2 2(cos U —asin ,u)(y sin ,u) (7 sin ,u)z \ 7, )

a, =|- (cos,u —asin y)(,b’ sin y) 1-28ysin® u (cos,u + o sin ,u)()/ sin ,u) a,

,BJ (Bsin i) —2(cos g1 +asin u ) fsin p) (cos u+asin u) B,
Vi )

- Thomas Jefferson National Accelerator Facility @ @ JSA
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i.e., if the vector V is ANY eigenvector of T, with eigenvalue 1.
All possible solutions may be obtained by investigating the
eigenvalues and eigenvectors of 7, Now

T, v, =A¥, hasa solution when Det (T, —AI)=0

1.€.,

(4”+[2-4cos” u]2+1)(1-2)=0
Therefore, M generates a transformation matrix 7,, with at least

one eigenvalue equal to 1. For there to be more than one solution
with A =1,

1+[2—4coszy}+120, cos’u=1, or M ==+I

g Thomas Jefferson National Accelerator Facili 5 =
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and we note that all ellipses are invariant when M = £/. But, these
two cases are excluded by hypothesis. Therefore, M generates a
transformation matrix 7, which always possesses a single
nondegenerate eigenvalue 1; the set of eigenvectors corresponding
to the eigenvalue 1, all proportional to each other, are the only
vectors whose components (y;, a;, 5;) yield equations for the
invariant ellipses. For concreteness, compute that eigenvector with
eigenvalue 1 normalized so Sy, — a? = 1

/7/1'\ ( -M, /M, \ /7/)
v, = =p (MII_M22)/2M12 =| &

\,Bi) \ 1 ) \,B)

All other eigenvectors with eigenvalue 1 have v, = &V, ./ c, for
some value c.

; Thomas Jefferson National Accelerator Facili R &
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Because Det (M) =1, the eigenvector \71, . clearly yields the
invariant ellipse

w' +2oxy+ B =¢.
Likewise, the proportional eigenvector v, generates the similar
ellipse

i(yocz +2axy+,8y2)=g
c

Because we have enumerated all possible eigenvectors with
eigenvalue 1, all ellipses invariant under the action of M, are of the
form

j/xz+205xy+,8y2 =C
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To summarize, this theorem gives a way to tie the mathematical
representation of a unimodular matrix in terms of its a, £, and y,
and 1ts phase advance, to the equations of the ellipses invariant
under the matrix transformation. The equations of the invariant
ellipses when properly normalized have precisely the same a, f,
and y as in the Twiss representation of the matrix, but varying c.

Finally note that throughout this calculation ¢ acts merely as a
scale parameter for the ellipse. All ellipses similar to the starting
ellipse, 1.€., ellipses whose equations have the same «a, £, and y,
but with different ¢, are also invariant under the action of M.
Later, 1t will be shown that more generally

2
&= + 2000+ " = (xz +(fr'+ax) )/ [
1s an invariant of the equations of transverse motion.
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When the motion of particles in transverse phase space 1s considered,
linear optics provides a good first approximation of the transverse
particle motion. Beams of particles are represented by ellipses in
phase space (1.e. in the (x, x") space). To the extent that the transverse
forces are linear in the deviation of the particles from some pre-
defined central orbit, the motion may analyzed by applying ellipse
transformation techniques.

Transverse Optics Conventions: positions are measured in terms of
length and angles are measured by radian measure. The area in phase
space divided by x, ¢, measured in m-rad, is called the emittance. In
such applications, a has no units, f has units m/radian. Codes that
calculate f, by widely accepted convention, drop the per radian when
reporting results, 1t 1s implicit that the units for x" are radians.
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Within a linear optics description of transverse particle motion,
the particle transverse coordinates at a location s along the beam
line are described by a vector

1(5)
dx ( ))

ds
If the differential equation giving the evolution of x 1s linear, one
may define a linear transport matrix M, ; relating the coordinates
at s' to those at s by

x(s') )

PR P
&) &)

A)
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From the definitions, the concatenation rule M. ;= M, . M, mQDU
apply for all s' such that s <s'< s" where the multiplication 1s the
usual matrix multiplication.

Pf: The equations of motion, linear in x and dx/ds, generate a
motion with

x(s) x(s") x(s') x(s)

MS",S @ = @ my |~ Ms",s' @ N |~ MS",S'MS',S @
o) =) () ~-(s)
for all initial conditions (x(s), dx/ds(s)), thus M. .= M. M .

Clearly M, = I. As 1s shown next, the matrix M,  1s in general a
member of the unimodular subgroup of the general linear group.
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Ellipse Transformations Generated leyypp
Hill’s Equation ODU

The equation governing the linear transverse dynamics in a
particle accelerator, without acceleration, 1s Hill s equation™

d*x
ds’

The transformation matrix taking a solution through an
infinitesimal distance dis 1s

x(s+ds)) ( ds \( x(s) [ x(s)
dx (s+ds)w_ 1 rad) dx (S)\EMMS,S @(S)W
ds ) \—K(s)dsrad 1 Ndas* ) \ds )

+K (S)x =0 Eqn. (2)

* Strictly speaking, Hill studied Eqn. (2) with periodic K. It was first applied to circular accelerators which had a
periodicity given by the circumference of the machine. It is a now standard in the field of beam optics, to still
refer to Eqn. 2 as Hill’s equation, even in cases, as in linear accelerators, where there is no periodicity.

. Thomas Jefferson National Accelerator Facility @ &_BA
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Suppose we are given the phase space ellipse ODU
y(s)x® + 2a(s)xx'+B(s )x* = &

at location s, and we wish to calculate the ellipse parameters, after
the motion generated by Hill’s equation, at the location s + dis

(s +ds)x* + 2a(s + ds )xx'+ B(s + ds x> = &

Because, to order linear in ds, Det M, ;. .= 1, at all locations s, &' =
¢, and thus the phase space area of the ellipse after an infinitesimal
displacement must equal the phase space area before the
displacement. Because the transformation through a finite interval
in s can be written as a series of infinitesimal displacement
transformations, all of which preserve the phase space area of the
transformed ellipse, we come to two important conclusions:

g Thomas Jefferson National Accelerator Facili N
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1. The phase space area 1s preserved after a finite integratiorQDU
Hill’s equation to obtain A, , the transport matrix which can

be used to take an ellipse at s to an ellipse at s'. This
conclusion holds generally for all s' and s.

2. Therefore Det M, =1 for all s' and s, independent of the
details of the functional form K(s). (If desired, these two
conclusions may be verified more analytically by showing
that

%(ﬂy—az)ﬂ) - Plshr(s)-a’(s)=1, Vs

may be derived directly from Hill’s equation.)
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Evolution equations for the «, W
p tfunctions ODU

The ellipse transformation formulas give, to order linear in ds

Bls+ds) =205+ p(s)
rad

(s + ds) = _y(s)i_z +als)+ (s)Kds rad

B, \  2a(s)
E(S)__ rad
4 () Bk rad—2)
ds rad

. Thomas Jefferson National Accelerator Facility @ %_ISA
J)effegon Lab USPAS Accelerator Physics Jan. 2011 \ 2



W

QDU

Note that these two formulas are independent of the scale of t
starting ellipse €, and in theory may be integrated directly for
S(s) and a(s) given the focusing function K(s). A somewhat
easier approach to obtain A(s) 1s to recall that the maximum

extent of an ellipse, x._,,, is (¢6)"*(s), and to solve the differential
equation describing its evolution. The above equations may be
combined to give the following non-linear equation for x_ . (s) =

w(s) = (eB)"(s) )
d*w (&/rad)
—+K (S) w= T
ds w
Such a differential equation describing the evolution of the
maximum extent of an ellipse being transformed 1s known as an
envelope equation.
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It should be noted, for consistency, that the same /(s) = wz(s)g) DU
1s obtained 1f one starts integrating the ellipse evolution

equation from a different, but similar, starting ellipse. That this

1S SO 1S an exercise.

The envelope equation may be solved with the correct
boundary conditions, to obtain the f-function. o may then be
obtained from the derivative of f, and y by the usual
normalization formula. Types of boundary conditions: Class [—
periodic boundary conditions suitable for circular machines or
periodic focusing lattices, Class II—initial condition boundary
conditions suitable for linacs or recirculating machines.
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Solution to Hill’s Equation in W’
Amplitude-Phase form ODU

To get a more general expression for the phase advance, consider
in more detail the single particle solutions to Hill’s equation

d*x
ds’

From the theory of linear ODEs, the general solution of Hill’s
equation can be written as the sum of the two linearly independent
pseudo-harmonic functions

x(s) = Ax, (S)-I— Bx_ (S)

+K(s)x=0

where

x, (s)= w(s et
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are two particular solutions to Hill’s equation, provided that

d*w ¢’
+ Kls jw=— and
ds”’ ( ) w ds

and where A, B, and ¢ are constants (in s)

L (s)=—

w(s)

, Eqns. (3)

That specific solution with boundary conditions x(s,) = x, and
dx/ds (s,) = x', has

g

.!effér%on Lab

W'(Sl)_l_

W(Sl )eiﬂ(sl)

IC

W(Sl )_

in(s)
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Therefore, the unimodular transfer matrix taking the solution at
s = 5, to 1ts coordinates at s = s, 1S

cosAu,  — sinAu, sin AgL,
W(Sl) c c 2
(xz ] _ ¢ {1 n W(Sz )W' (Sz )W(Sl )W' (51)} sin Ay Lxl j
= 2 52551
x', wls, Jw(s,) ¢ w(s,) cosAu  + w' (s, w(s,) sin Ay X'
_|:W'(S1)_ W'(Sz)}COSA W(Sz) o o
ILIS S
W(Sz) W(Sl)
where
) C
ILlsz,sl _ﬂ(SZ)_H(Sl):j 2 dS
LW (s)
1
J ffe? Lab Thomas Jefferson National Accelerator Facility @ @jSA
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Such boundary conditions, which may be used to describe
circular or ring-like accelerators, or periodic focusing lattices,
have K(s + L) = K(s). L 1s either the machine circumference or
period length of the focusing lattice.

Case |. K(s) periodic in s

It 1s natural to assume that there exists a unique periodic
solution w(s) to Eqn. (3a) when K(s) 1s periodic. Here, we will
assume this to be the case. Later, 1t will be shown how to
construct the function explicitly. Clearly for w periodic

s+L

w

S

Bls)=puls)—p,s  with g, = | %ds

1s also periodic by Eqn. (3b), and g, 1s independent of s.

Thomas Jefferson National Accelerator Facility @ &_BA

USPAS Accelerator Physics Jan. 2011

.!effér%on Lab



W
ODU

The transfer matrix for a single period reduces to
' 2
(s ' (s) W)

COS U, — sin 4,
c
W (s wls)
c

_;bﬁgmwéy@wakmﬁcwm+

:((1) ?)ws(h){j _ﬂ aJsin(ﬂL)

where the (now periodic!) matrix functions are

(s __W(S)w'(s) . :wz(s) . :1+a2(s)
() . ; :B() . 7/() ,B(S)

By Thm. (2), these are the ellipse parameters of the periodically
repeating, 1.e., matched ellipses.

sin 4,
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In terms of the f-function, the phase advance for the period is

General formula for phase advance

and more generally the phase advance between any two
longitudinal locations s and s' 1s

t ds
Al :'!.,B(S)
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Transfer Matrix in terms of a and g N

QDU

Also, the unimodular transfer matrix taking the solution from's

to s' 1s

M, = 1 [(ral(shals)sinan, | [A(s) )si
JB()B() L (a(s')—als))cos A, } —rlcosan, —als)sinau,,)

B(s)
Note that this final transfer matrix and the final expression for
the phase advance do not depend on the constant c. This
conclusion might have been anticipated because different
particular solutions to Hill’s equation exist for all values of ¢, but
from the theory of linear ordinary differential equations, the final
motion 1s unique once x and dx/ds are specified somewhere.
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Our previous work has indicated a method to compute the f-
function (and thus w) directly, 1.e., without solving the differential
equation Eqn. (3). At a given location s, determine the one-period
transfer map M, ((s). From this find y; (which is independent
of the location chosen!) from cos y, = (M,,+M,,) / 2, and by
choosing the sign of u; so that f(s) = M,,(s) / sin , 1s positive.
Likewise, a(s) = (M,-M,,) / 2 sin u,. Repeat this exercise at
every location the f-function is desired.

By construction, the beta-function and the alpha-function, and

hence w, are periodic because the single-period transfer map 1s
periodic. It is straightforward to show w=(cf(s))"? satisfies the
envelope equation.
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Courant-Snyder Invariant »

Consider now a single particular solution of the equations of ODU
motion generated by Hill’s equation. We’ve seen that once a

particle 1s on an invariant ellipse for a period, 1t must stay on that
ellipse throughout its motion. Because the phase space area of the
single period invariant ellipse is preserved by the motion, the
quantity that gives the phase space area of the invariant ellipse in
terms of the single particle orbit must also be an invariant. This
phase space area/r,

&= +200x'+ " = (xz +(fBr'+ax)’ )/ [

1s called the Courant-Snyder invariant. It may be verified to be

a constant by showing its derivative with respect to s 1s zero by
Hill’s equation, or by explicit substitution of the transfer matrix
solution which begins at some initial value s = 0.
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ﬂﬂ(s)(cos At +aysin Ay, ) i [ : w

dx = 0 dx

{@ ek | 2 e

) L0 _{cos —als)sin ds
IB(S)IBO + (a(S)_ao)COS AIUS’O ,B(S)( AIUS’O ( ) AIuS,O)

Pseudoharmonic Solution

Y

(x2 (S)"'(IB(S)X'(S)+0‘(S)X(S))2 )/ /B(S): (xé +(ﬂox'o+aoxo )2 )/ po=¢

Using the x(s) equation above and the definition of ¢, the
solution may be written 1n the standard “pseudoharmonic™ form

x(s)=+/gB(s) cos(A,uS,O -0 ) where ¢ = tanl('g oo +a0xo)

The the origin of the terminology “phase advance™ 1s now obvious.
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Case Il K(s) not periodic “'+"
In a linac or a recirculating linac there 1s no closed orbit or natuga)l U
machine periodicity. Designing the transverse optics consists of
arranging a focusing lattice that assures the beam particles coming
into the front end of the accelerator are accelerated (and sometimes
decelerated!) with as small beam loss as 1s possible. Therefore, it 1s
imperative to know the initial beam phase space injected into the
accelerator, 1n addition to the transfer matrices of all the elements
making up the focusing lattice of the machine. An 1initial ellipse, or

a set of initial conditions that somehow bound the phase space of

the injected beam, are tracked through the acceleration system
element by element to determine the transmission of the beam
through the accelerator. The designs are usually made up of well-
understood “modules” that yield known and understood transverse
beam optical properties.
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Now the pseudoharmonic solution applies even when K(s) 1s
not periodic. Suppose there 1s an ellipse, the design injected

ellipse, which tightly includes the phase space of the beam at
injection to the accelerator. Let the ellipse parameters for this

ellipse be a,, f,, and y,. A function S(s) 1s simply defined by the
ellipse transformation rule

IB(S):(MI()) 2M12(S) 11( )0‘0 ( ()) o
= (M, () + (B,M,, (5)- ]/ﬁo

where
i
M =

o 8)
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One might think to evaluate the phase advance by integrating
the beta-function. Generally, 1t is far easier to evaluate the phase
advance using the general formula,

(M s's8 )12
Ak, ), —alsh,., ),
where f(s) and a(s) are the ellipse functions at the entrance of

the region described by transport matrix M, . Applied to the
situation at hand yields

tanAp, =

M12(S)
ﬂOMll(S)_aOMU(S)

tan Ay, , =
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Fundamentally, in circular accelerators beam matching is ODU
applied in order to guarantee that the beam envelope of the real
accelerator beam does not depend on time. This requirement 1s
one part of the definition of having a stable beam. With periodic
boundary conditions, this means making beam density contours
in phase space align with the invariant ellipses (in particular at
the injection location!) given by the ellipse functions. Once the
particles are on the invariant ellipses they stay there (in the

linear approximation!), and the density is preserved because the
single particle motion 1s around the invariant ellipses. In linacs
and recirculating linacs, usually different purposes are to be
achieved. If there are regions with periodic focusing lattices
within the linacs, matching as above ensures that the beam

Beam Matching
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envelope does not grow going down the lattice. Sometimes it 1s
advantageous to have specific values of the ellipse functions at
specific longitudinal locations. Other times, re/matching 1s done to
preserve the beam envelopes of a good beam solution as changes
in the lattice are made to achieve other purposes, e.g. changing the
dispersion function or changing the chromaticity of regions where
there are bends (see the next chapter for definitions). At a
minimum, there 1s usually a matching done 1n the first parts of the
injector, to take the phase space that is generated by the particle
source, and change this phase space in a way towards agreement
with the nominal transverse focusing design of the rest of the
accelerator. The ellipse transformation formulas, solved by
computer, are essential for performing this process.
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Dispersion Calculation

Begin with the inhomogeneous Hill’s equation for the
dispersion.
2
d 12) +K(s)D= :
ds p(s)
Write the general solution to the inhomogeneous equation for
the dispersion as before.

D(S)ZDp (S)-I— Ax, (S)+ Bx, (s)

Here D, can be any particular solution. Suppose that the
dispersion and 1t’s derivative are known at the location s, and
we wish to determine their values at s,. x, and x,, because they
are solutions to the homogeneous equations, must be
transported by the transfer matrix solution M, ., already found.
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To build up the general solution, choose that particular solution
of the inhomogeneous equation with boundary conditions

D,o(s1)=D;(s)=0

Evaluate 4 and B by the requirement that the dispersion and it’s
derivative have the proper value at s, (x, and x, need to be
linearly independent!)

(g o) (26

g Thomas Jefferson National Accelerator Facili 5 =
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3 by 3 Matrices for Dispersion Tracking s

2) (MS%SI )11 (Msz’sl )12
2) N (Msz’sl 21 (M ’
0 0

Wi”
ODU

Particular solutions to inhomogeneous equation for constant K

and constant p and vanishing dispersion and derivative at.s =0

.!effér%on Lab

K<0 K=0 K>0
Dp,O(S) |K1|p(COSh( |K|s)—1) % KLp(l—cos(\/Es))
! 1 S 1 .
Dp,O(S) \/mp smh( |K|s) ; \/E,O sm(\/Es)

Thomas Jefferson National Accelerator Facility
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In addition to the transverse effects of the dispersion, there are important effects of(th)eDU
dispersion along the direction of motion. The primary effect is to change the time-of-

arrival of the off-momentum particle compared to the on-momentum particle which
traverses the design trajectory.

Ap ds
p p(s)

d(Az)=D(s)

M56:

Thomas Jefferson National Accelerator Facility @ @JSA
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Classical Microtron: Veksler (1945)

Extraction

RF Cavity

Thomas Jefferson National Accelerator Facili
.!effegon Lab v

USPAS Accelerator Physics Jan. 2011
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X Magnetic
Field

u=2

VvV =

@&
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Synchrotron Phase Stability

ODU

Edwin McMillan discovered phase stability independently of
Veksler and used the 1dea to design first large electron synchrotron.

O b S
AN (™
Ju U
1 e 1
h=Lf,. | fBc Harmonic number: # of RF

oscillations 1n a revolution
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Beam energy where speed increment effect balances path length
change effect on accelerator revolution frequency. Revolution
frequency independent of beam energy to linear order. We will
calculate in a few weeks

Transition Energy

e Below Transistion Energy: Particles arriving EARLY get less acceleration
and speed increment, and arrive later, with repect to the center of the bunch,
on the next pass. Applies to heavy particle synchrotrons during first part of
acceleration when the beam 1s non-relativistic and accelerations still
produce velocity changes.

® Above Transistion Energy: Particles arriving EARLY get more energy, have
a longer path, and arrive later on the next pass. Applies for electron
synchrotrons and heavy particle synchrotrons when approach relativistic
velocities. As seen before, Microtrons operate here.
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Phase Stability Condition

“Synchronous” electron has
Phase = ¢, E =E +leV. cosg,

Difference equation for differences after passing through cavity pass [+ 1:

,
Ay | 1 0} 1 ZZM%W Ag,
AE,, | \—eV. sing 1 0 IEZ )AEZ

Because for an electron passing the cavity

AE — AE1Z9ef0re Te I/c (COS(¢S T A¢)_ COS¢S )

after

; Thomas Jefferson National Accelerator Facili N
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Phase Stability Condition

E—
o, (1+AE/E) K =1/ p’ ODU
D, ,,=p,(1-cos(s/p,)) 0<s<27p,
D 27p;
M, = j;ds = _([ (1-coss/p, s
= 27p,
( i 477 p, )
(A¢I+IJ - /1El |[A¢lj
~ 2
ALy, —eV sing, 11— 7 piel sin @, AL,
\ AR, )

g Thomas Jefferson National Accelerator Facili
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Phase Stability Condition

Have Phase Stability if

2
—1<(Tr2Mj<1—> 1= 2P g <

AE,
27peV. %
L Pif7 sin ¢, = ﬂfRFezc cos ¢ tan @, = 7 Jrr Y tan @,
AE, f.mc )
1.€.,

O<vrtang, <2

g Thomas Jefferson National Accelerator Facili
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Phase Stability Condition

Have Phase Stability if

ODU

2
Tr M
<1
2
1.€.,
O<vrtang, <2
= Thomas Jefferson National Accelerator Facility JSA
J,effegon Lab USPAS Accelerator Physics Jan. 2011 @ @



Synchrotrons

Two basic generalizations needed

» Acceleration of non-relativistic
particles

« Difference equation describing
per turn dynamics becomes a
differential equation with solution
involving a new frequency, the
synchrotron frequency

Thomas Jefferson National Accelerator Facility
USPAS Accelerator Physics Jan. 2011
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Acceleration of non-relativistic particleS

For microtron, racetrack microtron and other polytrons,
electron speed 1s at the speed of light. For non-relativistic
particles the recirculation time also depends on the longitudinal
velocity v, = S c.

ODU

reczrc_L/IBC
Af OL Ap L o] 1 Ap
51?,36’ c op| P,

At M Ap A, M Ap 1 Ap
trecirc L p IBZ L p 7/2 p
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Momentum Compaction o = (AL/L)/(Ap / p) =M, /L ODU

At A 1 M 1
— _770 _p — 770 — - 56 — - — o
ZLrecirc p ?/ ?/
2pApc’ =2EAE — Ap = | AE —> Al =1 AL

p ﬂ 22 E trecirc IB 22 E

Transition Energy: Energy at which the change in the once
around time becomes independent of momentum (energy)

No Phase Focusing at this energy!

; Thomas Jefferson National Accelerator Facili R &
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Equation for Synchrotron Oscillations \hlidg

ein ODU

A¢l+1 _ 1 O 1 ﬁﬂzE A¢l
AE,, ) |—eV sing, 1 L AE,

0 1
( i _2rlny, )
_ ABCE, (A@j
—eV sing. 1+ 27[6770 eV sin g, AE)
\ AP E, J

Assume momentum slowly changing (adiabatic acceleration)
Phase advance per turn 1s

wLln,
ABCE,

2Ly,
ABCE,

cosAu =1+ eV sing — Au’ ~ - eV sing,

g Thomas Jefferson National Accelerator Facili N
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So change 1n phase per unit time 1s

Aﬂz : \/—2ﬂaneV sin @

T T, AB.pc

0

yielding synchrotron oscillations with frequency

h :
@ = a)rev\/— 1. eV sin @,
2w pc

where the harmonic number h =L/ _A, gives the integer
number of RF oscillations in one turn

Thomas Jefferson National Accelerator Facility @ €JSA

USPAS Accelerator Physics Jan. 2011

J)effegon Lab



W
ODU

Phase Stable Acceleration

At energies below transition, #,.> 0. To achieve acceleration
with phase stability need ¢ <0

LW, = a)rev\/}mc eV sin (—¢,)

27w pc

At energies above transition, 7. < 0, which corresponds to the
case we’re used to from electrons. To achieve acceleration with
phase stability need ¢ >0

Lo, = a)rev\/h (=7.) V. sin @,
27 pc
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LLarge Amplitude Effects

Can no longer linearize the energy error equation.

27L
L.z
APCE,

AE,, =AE, +eV. (cos(¢S +A¢,)—cos¢s)

dAg ~ Ag ., —Ag, __272-770 AE

A¢1+1 = A¢z -

dt T, Ap
dAE _AE,,-AE, eV, (cos(g, + A, )—cosg,)
di T, T,
d’A¢ ~ 2nn,

e ol ch(cos(¢s+A¢)—cos¢S)
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Constant of Motion (Longitudinal qqepp
“Hamiltonian) ODU

dAg d*A¢ __ 2mn. ., dA§
dt dt’ ApT, ° dt

(cos(¢s +A¢)—cos ¢S)

1(dAg\  2xn .
—| — | =— eV (sin +A@)—A@cos +C
2[@” 71 ¢ sin (4, +ag)—Agcosg)

1 27n,

H(A$,T,AE) = > (TOAE)2 +eV (sin (¢, + Ap)—Agcos ¢S)

ApT,

0
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Equations of Motion

If neglect the slow (adiabatic) variation of p and 7,, with time,
the equations of motion approximately Hamiltonian

d\p  OH d(T,AE)  0H

dt  O(T,AE) dt OA¢

In particular, the Hamiltonian is a constant of the motion

Kinetic Energy Term
_ 1271,

T —
2 Ap

(AE)
Potential Energy Term
V=el (sin(gés + A¢)— AP cosg )
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No Acceleration

ODU

¢ =xtm/2 V=el cosAg

d’A¢ .
= . SIn A
dt’ ’ ?

Better known as the real pendulum.
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With Acceleration

d2A¢_ a)s2 B
i T sng (cos(¢s +Ag)—cos ¢S)

L(dAg) _ el )
2( dt j sin ¢ (Sm(¢s+A¢) A¢cos¢s)+c

S

Equation for separatrix yields “fish” diagrams in phase space.
Fixed points at

cos(g, +Ap)=cosg, ~ Ap=0,-24
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