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Course Outline

• Course Content
• Introduction to Accelerators and Short Historical Overview

Basic Units and Definitions
Lorentz Force
Linear Accelerators
Circular Accelerators

• Particle Motion in EM Fields• Particle Motion in EM Fields
Magnetic Multipoles
Linear Beam DynamicsLinear Beam Dynamics
Periodic Systems
Nonlinear Perturbations
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Coupled Motion



• Synchrotron Radiation
Radiation Power and Distribution
Insertion Devices
X-ray Sources
Free Electron Lasers

• Technical Components
Particle Acceleration Cavities and RF SystemsParticle Acceleration Cavities and RF Systems
Spin and Spin Manipulation

• Collective EffectsCollective Effects
Particle Distributions
Vlasov Equation
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Self-consistent Fields
•



Landau Damping
Beam-Beam Effects

• Relaxation Phenomena
Radiation Damping
Toushek effect/IBS
Beam Cooling
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Energy Units
• When a particle is accelerated, i.e., its energy is changed 

by an electromagnetic field, it must have fallen through an 
Electric Field (we show later by very general argumentsElectric Field (we show later by very general arguments 
that Magnetic Fields cannot change particle energy). For 
electrostatic accelerating fields the energy change is 

( )a bE q q∆ = ∆Φ = Φ −Φ
q charge Φ the electrostatic potentials before and after theq charge, Φ, the electrostatic potentials before and after the 
motion through the electric field. Therefore, particle energy 
can be conveniently expressed in units of the “equivalent” 
l i i l h d d l helectrostatic potential change needed to accelerate the 

particle to the given energy. Definition: 1 eV, or 1 electron 
volt, is the energy acquired by 1 electron falling through a 
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, gy q y g g
one volt potential difference.



Energy Units

19 19

6 13

   1 eV = 1.6 10  C  1 V  = 1.6 10  J− −× × ×
6 131 MeV = 10  eV = 1.6 10  J−×

To convert rest mass to eV use Einstein relation

2
0                                  =E mc

h i th t F l t

( )231 8 15
,0 9.1 10  kg 3 10  m/sec 81.9 10  JelectronE − −= × × = ×

where m is the rest mass. For electrons

( ),

                               = 0.512 MeV
Recent “best fit” value 0 51099906 MeV
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Recent best fit  value 0.51099906 MeV



Some Needed Relativity

Following Maxwell Equations, which exhibit this symmetry, 
assume all Laws of Physics must be of form to guarantee the 
i i f th ti i t l

( ) ( )2 22 2 2 2 2 2' ' ' 'ct x y z ct x y z− − − = − − −

invariance of the space-time interval

( ) ( )
Coordinate transformations that leave interval unchanged are the 
usual rotations and Lorentz Transformations, e.g. the z boost

( )'
'

ct ct z
x x

γ β= −

=

( )
'
'

y y
z z ctγ β
=

=
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( )z z ctγ β= −



Relativistic Factors

vv
rr

where, following Einstein define the relativistic factors

vv         =

1
c c

β β=
r

2

1     
1

γ
β

=
−

Easy way to accomplish task of defining a Relativistic 
Mechanics: write all laws of physics in terms of 4-vectors and 4-
tensors, i.e., quantities that transform under Lorentz 
transformations in the same way as the coordinate differentials.
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Four-vectors

( )0 0 3'v v vγ β= −
Four-vector transformation under z boost Lorentz Transformation

( )
1 1

2 2

'
'

v v
v v

=

( )3 3 0'

v v

v v vγ β

=

= −

21d dtτ β≡ −
Important example: Four-velocity.  Note that interval 

Lorentz invariant. So the following is a 4-vector

( ), , , 1, , ,x y z
dct dx dy dzcu cα γ β β β⎛ ⎞≡ =⎜ ⎟

⎝ ⎠
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( ), , , , , ,x y zd d d d
γ β β β

τ τ τ τ⎜ ⎟
⎝ ⎠



4-Momentum
Single particle mechanics must be defined in terms of Four-
momentum

( )( )1, , ,x y zp mcu mcα α γ β β β≡ =

Norms, which must be Lorentz invariant, are, ,

1,u u p p mcα α
α α≡ ≡

What happens to Newton’s Law                                 ?

dpα

/F ma dp dt= =
r r r

B t d F f th RHS!!!

dp F
d

α

τ
≡
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But need a Four-force on the RHS!!!



Electromagnetic (Lorentz Force)

( )vF q E B= + ×
r r rr

Non-relativistic

( )q

Relativistic Generalization (ν summation implied)

F Fα α νF qF uα α ν
ν=

Electromagnetic Field
0 E E E⎛ ⎞0

0
x y z

x z y

E E E
E cB cB

Fα

⎛ ⎞
⎜ ⎟−⎜ ⎟≡ ⎜ ⎟0

0
y z x

z y x

F
E cB cB
E cB cB

ν ≡ ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠
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Relativistic Mechanics in E-M Field

r
Energy Exchange Equation (Note: no magnetic field!)

2

vd qE
dt mc
γ ⋅
=

r

Relativistic Lorentz Force Equation (you verify in HW!) 

( ) ( )vd m
E B

γ
+ ×

r r rr( ) ( )vq E B
dt

= + ×
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Methods of Acceleration
• Acceleration by Static Electric Fields (DC) Acceleration

– Cockcroft-Walton
d G f A l t– van de Graaf Accelerators

– Limited by voltage breakdowns to potentials of under a 
million volts in 1930, and presently to potentials of tens of o vo ts 930, a d p ese t y to pote t a s o te s o
millions of volts (in modern van de Graaf accelerators). Not 
enough to do nuclear physics at the time.

R di F (RF) A l i• Radio Frequency (RF) Acceleration
– Main means to accelerate in most present day accelerators 

because one can get to 10-100 MV in a meter these days.because one can get to 10 100 MV in a meter these days. 
Reason: alternating fields don’t cause breakdown (if you are 
careful!) until much higher field levels than DC.
d d i h i d id
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– Ideas started with Ising and Wideröe



Cockcroft-Walton
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Proton Source at Fermilab, Beam Energy 750 keV



van de Graaf Accelerator

Brookhaven
Tandem
van de Graafvan de Graaf
~ 15 MV

G t
Tandem trick multiplies 
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Generator
p

the output energy



Ising’s Linac Idea

Prinzip einer Methode zur Herstellung von Kanalstrahlen hoher Voltzahl’ (in 
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p g (
German), Arkiv för matematik o. fysik, 18, Nr. 30, 1-4 (1924).



Drift Tube Linac Proposal
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Idea Shown in Wideröe Thesis



Wideröe Thesis Experiment

Über ein neues Prinzip zur Herstellung hoher Spannungen Archiv für Elektrotechnik 21 387 (1928)
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Über ein neues Prinzip zur Herstellung hoher Spannungen, Archiv für Elektrotechnik 21, 387 (1928) 

(On a new principle for the production of higher voltages)



Sloan-Lawrence Heavy Ion Linac

The Production of Heavy High Speed Ions without the Use of High Voltages
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y g p g g
David H. Sloan and Ernest O. Lawrence Phys. Rev. 38, 2021 (1931)



Alvarez Drift Tube Linac

• The first large proton drift tube linac built by Luis Alvarez 
and Panofsky after WW II
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Earnest Orlando Lawrence
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Germ of Idea*

*Stated in
E O Lawrence
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E. O. Lawrence 
Nobel Lecture



Lawrence’s Question
• Can you re-use “the same” accelerating gap many times?

vF ma q B= = ×
r rr r

B
r

22
2

2 2

v
vv   v 0x

y c x

F ma q B
dd x qB

dt m dt

×

= → +Ω =

B

22
2

2 2

v
v v 0

y

y
x c y

dt m dt
dd y qB

= − → +Ω =

( ) ( )

2 2

2 2v v v v v v 0

x c y

x y x y y x

dt m dt
d qB

+ = − =
gap

is a constant of the motion

( ) ( )x y x y y xdt m

( ) ( )2 2
0v v vx yt t= +
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( ) ( )0 x y



Cyclotron Frequency

( ) ( ) ( ) ( )0 0      v v cos ; v v sinx c y ct t t tδ δ= Ω + = − Ω +

( ) ( ) ( ) ( )0 0
0 0

v vsin ; cosc c
c c

x t x t y t y tδ δ= + Ω + = + Ω +
Ω Ω

The radius of the oscillation r = v0/Ωc is proportional to the velocity 
after the gap. Therefore, the particle takes the same amount of time to 
come around to the gap independent of the actual particle energy!!!!come around to the gap, independent of the actual particle energy!!!!  
(only in the non-relativistic approximation). Establish a resonance 
(equality!) between RF frequency and particle transverse oscillation 
f l k th C l t Ffrequency, also known as the Cyclotron Frequency

/2rf c c
qBf f π= = Ω =
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2rf c cf f
mπ



What Correspond to Drift Tubes?

• Dee’s!
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U. S. Patent Diagram
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Magnet for 27 Inch Cyclotron (LHS)
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Lawrence and “His Boys”
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And Then!
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Beam Extracted from a Cyclotron
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Radiation Laboratory 60 Inch Cyclotron, circa 1939



88 Inch Cyclotron at Berkeley Lab
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Relativistic Corrections

When include relativistic effects (you’ll see in the HW!) the 
“effective” mass to compute the oscillation frequency is the 

/2 qBf Ω

p q y
relativistic mass γm

/2
2c c

q
m

Bf π
πγ

= Ω =

where γ is Einstein’s relativistic γ most usefully expressed aswhere γ is Einstein s relativistic γ, most usefully expressed as

2
0tot kin kinE E E mc Eγ + +

= = = 2
0 0E E mc

γ = = =

m particle rest mass E particle kinetic energy
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m particle rest mass, Ekin particle kinetic energy



Cyclotrons for Radiation Therapy
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Bragg Peak
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Betatrons

25 MeV electron accelerator with its inventor: Don Kerst. The 
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earliest electron accelerators for medical uses were betatrons.



300 MeV ~ 1949
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Electromagnetic Induction

r
Faraday’s Law: Differential Form of Maxwell Equation

BE
t

∂
∇× = −

∂

r r

BE dS dS∂
∇×∫ ∫

r
r rr r

Faraday’s Law: Integral Form

S S

E dS dS
t

∇× ⋅ = − ⋅
∂∫ ∫

Faraday’s Law of InductionFaraday s Law of Induction

2 B
dE dl RE
dtθπ⋅ = = − Φ∫

rr
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S dt∂
∫



Transformer
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Betatron as a Transformer

• In the betatron the electron beam itself is the secondary 
winding of the transformer. Energy transferred directly to 
th l tthe electrons

2 B
dRE
dtθπ = − Φ

• Radial Equilibrium
dt

cβ

• Energy Gain Equation
/
cR

eB m
β
γ

=

2

eE cd
dt mc

θ βγ
=
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Betatron condition
To get radial stability in the electron beam orbit (i.e., the orbit 
radius does not change during acceleration), need

            and dB B d B cmR const
dt dt eR

γ
γ γ

= ⇒ = ≈

( )

2
2

2

1 for some  and 2
2

B
B

dd ecR B
dt mc R dt
γαπ α α

π
Φ

Φ = ≈ ⇒ =

This last expression is sometimes called the “betatron two for 
” diti Th i f th fl h i

( )2                            2B R B r Rπ∴Φ = =

one” condition. The energy increase from the flux change is

0 2 B
q cβγ γ− ≈ ∆Φ
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0 22 BRmc
γ γ

π



Transverse Beam Stability

Ensured by proper shaping of the magnetic field in the betatron
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Ensured by proper shaping of the magnetic field in the betatron



Relativistic Equations of Motion
Standard Cylindrical Coordinates

z
( )v v 0!!d q dB γ
×

r rr

θ r
θ̂

y
( )v      0!!q B

dt m dt
γ

γ
= × =

2 2 2r x y= +θ
r̂x
                     
             cos      sin

ˆˆ ˆ ˆ ˆ ˆi i

r x y
x r y rθ θ

θ θ θ θ θ

= +
= =

ˆ ˆ ˆ ˆ ˆcos sin      sin cos
ˆˆ        v v        v vr

r x y x y

r r rθ

θ θ θ θ θ

θ θ

= + = − +

= ⋅ = = ⋅ =
r r && θ

( )v ˆˆv vr
d d r
dt dt θθ= +
r ˆˆ /

ˆ
dr dt θθ= &

&
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( )dt dt ˆ ˆ/d dt rθ θ= − &



Cylindrical Equations of Motion
In components

( )2 vq qr r B r Bθ θ− = × =
rr& &&& ( )

( ) ( )

  v

2 v

zr
r r B r B

m m
q qr r B B rB

θ θ
γ γ

θ θ

= × =

+ ×
rr&& && &&( ) ( )

( )

2 v r z
q qr r B zB rB
m m

q qB B

θ
θ θ

γ γ

θ

+ = × = −

rr &&& ( )       v rz

q qz B r B
m m

θ
γ γ

= × = −
r

&&

Zero’th order solutionZero th order solution

( )
( ) ( )

r t cons R

θ θ θ

= =
&
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( ) ( )0 0       0t t z tθ θ θ= + =



Magnetic Field Near Orbit
Get cyclotron frequency again, as should

( ), 0zqB r R z
θ

= =
= = Ω&

0 cm
θ

γ
= − = Ω

Magnetic field near equilibrium orbit

( ) ( ) ( )0 ˆˆ ˆ, r zB BB r z B z r R r r R z
r r

∂ ∂
+ − + − +
∂ ∂

r

ˆ ˆr zB Bzr zz
z z

∂ ∂
+

∂ ∂

0      0, 0 0z r z
r

B B BB B B
r z z

∂ ∂ ∂
∇× = → = ∇ ⋅ = = → =

∂ ∂ ∂

r r r r
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Field Index
Magnetic Field completely specified by its z-component on the 
mid-plane

B∂( ) ( )0 ˆˆ ˆ, zBB r z B z r R z zr
r

∂
+ − +⎡ ⎤⎣ ⎦∂

r

Power Law model for fall-offPower Law model for fall-off

( ) ( )0, 0 / n
zB r z B R r=

The constant n describing the falloff is called the field index

( ) ( )0 ˆˆ ˆnB
⎡ ⎤

r
( ) ( )0

0 ˆˆ ˆ, nBB r z B z r R z zr
R

− − +⎡ ⎤⎣ ⎦

USPAS Accelerator Physics  Jan. 2011



Linearized Equations of Motion
Assume particle orbit “close to” or “nearby” the unperturbed orbit

( ) ( ) ( ) ( ) ( ) ( )r t r t R t t t z t z tδ δθ θ δ= − = −Ω =( ) ( ) ( ) ( ) ( ) ( )       cr t r t R t t t z t z tδ δθ θ δΩ

0 0
0    z r

nB nBB B r B z
R R

δ δ≈ − ≈ −
R R

2 0
0 02c c c c

nBqr r R r B R B R r
R

δ δ δθ δ δθ δ⎡ ⎤− Ω − Ω = Ω + − Ω⎢ ⎥⎣ ⎦
& &&&

          2 c c c

m R
R r r R r const

γ
δθ δ δ δθ δ

⎢ ⎥⎣ ⎦
+ Ω = Ω → + Ω =&& && &

20                      c c
nBqz R z n z

m R
δ δ δ

γ
= Ω = − Ω&&
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“Weak” Focusing

For small deviations from the unperturbed circular orbit the 
transverse deviations solve the (driven!) harmonic oscillator 
equations

( ) 21 c cr n r constδ δ+ − Ω = Ω&&

2        0cz n zδ δ+ Ω =&&

The small deviations oscillate with a frequency n1/2Ω in theThe small deviations oscillate with a frequency n Ωc in the 
vertical direction and (1 – n)1/2 Ωc in the radial direction. 
Focusing by magnetic field shaping of this sort is called Weak 
F i Thi h d h i h d f f i iFocusing. This method was the primary method of focusing in 
accelerators up until the mid 1950s, and is still occasionally 
used today.
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Stability of Transverse Oscillations

• For long term stability, the field index must satisfy

0 1n< <

because only then do the transverse oscillations remain 
bounded for all time. Because transverse oscillations in 
accelerators were theoretically studied by Kerst and Serber y y
(Physical Review, 60, 53 (1941)) for the first time in 
betatrons, transverse oscillations in accelerators are known 
generically as betatron oscillations Typically n was aboutgenerically as betatron oscillations. Typically n was about 
0.6 in betatrons.
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Physical Source of Focusing

0 n<

Br changes sign as go 
through mid-plane. Bz

k i

1n <

weaker as r increases

1n <

Bending on a circular orbit is naturally focusing in the bend 
direction (why?!), and accounts for the 1 in 1 – n. Magneticdirection (why?!), and accounts for the 1 in 1 n. Magnetic 
field gradient that causes focusing in z causes defocusing in 
r, essentially because                              . For n > 1, the 
defocusing wins out

/ /z rB r B z∂ ∂ = ∂ ∂
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defocusing wins out.



First Look at Dispersion

Newton’s Prism Experiment

screen
px D ⎛ ⎞∆

∆ = ⎜ ⎟

prism

screen

d

violet

x D
p

p

∆ = ⎜ ⎟
⎝ ⎠
⎛ ⎞∆prism red px

p
η
⎛ ⎞∆

∆ = ⎜ ⎟
⎝ ⎠

Dispersion units: m
Bend Magnet as Energy Spectrometer

position sensitive
material

Dispersion units: m

material

Low energy

High energy
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Bend magnet
Low energy



Dispersion for Betatron

c pR β
Radial Equilibrium

/
pR

eB m eB
β
γ

= =

LinearizedLinearized

( )( )0 0 0
p pR R B B RB R B RB

e
+ ∆

+ ∆ + ∆ = ≈ + ∆ + ∆
e

( )0 0 01p n RB RB n RB∆
≈ − ∆ + ∆ = − ∆( )0 0 0e

( ) ( )
1 radial

p R Rn D∆ ∆
≈ − → =
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( ) ( )1radialp R n−



Evaluate the constant

( ) 21 c cr n r constδ δ+ − Ω = Ω&&

For a time independent solution (orbit at larger radius)r Rδ ∆For a time independent solution                      (orbit at larger radius) 

( ) 21 c cn R const− Ω ∆ = Ω

r Rδ = ∆

( )

( )1 c radial c
p pconst n D R
p p
∆ ∆

= − Ω = Ω

∆

p p

General Betatron Oscillation equations

( ) 2 21 c c
pr n r R
p

δ δ ∆
+ − Ω = Ω&&
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No Longitudinal Focusing

         c c
pR r Rδθ δ ∆

+Ω = Ω&
c c p

p Rt dtθ θ
⎡ ⎤∆ ∆

+Ω + Ω Ω⎢ ⎥∫0

1

c c ct dt
p R

p

θ θ= +Ω + Ω −Ω⎢ ⎥
⎣ ⎦

∆ ⎡ ⎤

∫

∫0
1   1

1c c
pt dt
p n

θ ∆ ⎡ ⎤= +Ω + Ω −⎢ ⎥−⎣ ⎦∫

Greater
Speed

Weaker
Field
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Classical Microtron: Veksler (1945)

Extraction

5l

6=l

4=l

5=l

⊗ Magnetic
Field2=l

3=l

y

1=l

RF Cavity
x 2

1
µ
ν

=
=
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Basic Principles
For the geometry given

( v) vd m e E B
dt
γ ⎡ ⎤= − + ×⎣ ⎦

r r rr

( v ) v

( v )

x
y z

y

d m e B
dt

d m
B

γ

γ

=

( )
vy

x ze B
dt
γ

= −

2 2

2 2

v v 0x c
x

d
d

Ω
+ =

2 2

2 2

v
v 0y c

y

d Ω
+ =2 2 xdt γ 2 2 ydt γ

For each orbit, separately, and exactly

0v ( ) cos( / )x x ct v t γ= − Ω 0v ( ) sin( / )y x ct v t γ= Ω

( )γγ /sin)( 0 tvtx c
c

x Ω
Ω

−= ( )γγγ /cos)( 00 tvvty c
c

x

c

x Ω
Ω

−
Ω

=
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N l ti i ti l t f Bf /2ΩNon-relativistic cyclotron frequency:

Relativistic cyclotron frequency:

meBf zcc /2 ==Ω π

γ/cΩ

Bend radius of each orbit is: 0,v / /l l x l c l ccρ γ γ= Ω → Ω

In a conventional cyclotron, the particles move in a circular orbit that 
grows in size with energy, but where the relatively heavy particles stay 
in resonance with the RF which drives the accelerating DEEs at thein resonance with the RF, which drives the accelerating DEEs at the 
non-relativistic cyclotron frequency. By contrast, a microtron uses the 
“other side” of the cyclotron frequency formula. The cyclotron 
frequency decreases, proportional to energy, and the beam orbit radius 
increases in each orbit by precisely the amount which leads to arrival of 
the particles in the succeeding orbits precisely in phase.
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Microtron Resonance Condition
Must have that the bunch pattern repeat in time. This condition 
is only possible if the time it takes to go around each orbit is 
precisely an integral number of RF periods

1
c

RF

f
f

γ µ= c

RF

f
f

γ ν∆ =
RFf RFf

First Orbit
Each Subsequent

Orbit

1 1 c

RF

f
f

γ ν≈ +For classical microtron
assume can inject so that

1c

R F

f
f µ ν

≈
−
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Parameter Choices
The energy gain in each pass must be identical for this resonance to be 
achieved, because once  fc/fRF is chosen, ∆γ is fixed. Because the energy gain of 
non-relativistic ions from an RF cavity IS energy dependent, there is no way 
(presently!) to make a classical microtron for ions. For the same reason, in 
electron microtrons one would like the electrons close to relativistic after the 
first acceleration step. Concern about injection conditions which, as here in the 
microtron case, will be a recurring theme in examples!microtron case, will be a recurring theme in examples!

0// BBff zRFc =
e
mcB
λ
π2

0 =
eλ

kG@10cm07.1T107.00 ==B

Notice that this field strength is NOT state-of-the-art, and that one normally 
chooses the magnetic field to be around this value. High frequency RF is 
expensive too!
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Classical Microtron Possibilities

1 1/2 1/3 1/4
Assumption: Beam injected at low energy and energy gain is the same for each pass

Lc

f
f

2, 1, 2, 1 3, 1, 3/2, 
1

4, 1, 4/3, 
1

5, 1, 5/4, 
1

1, , ,µ ν γ γ∆ 1, , ,µ ν γ γ∆ 1, , ,µ ν γ γ∆ 1, , ,µ ν γ γ∆ L
RFf

1 1 1
3, 2, 3, 2 4, 2, 2, 2 5, 2, 5/3, 

2
6, 2, 3/2, 

2

L

L
4, 3, 4, 3 5, 3, 5/2, 3 6, 3, 2, 3 7, 3, 7/4, 

3
5, 4, 5, 4 6, 4, 3, 4 7, 4, 7/3, 8, 4, 2, 4

L
L

4
OM M M M
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For same microtron magnet no advantage to higher n; RF is more expensiveFor same microtron magnet, no advantage to higher  n; RF is more expensive 
because energy per pass needs to be higher

Extraction

⊗ Magnetic
Field

y

3
2

µ
ν

=
=

RF Cavity
x
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Going along diagonal changes 
frequencyTo deal with lower frequencies go up the diagonalq y

Extraction

To deal with lower frequencies, go up the diagonal

⊗ Magnetic
Field

y

RF Cavity
x 4

2
µ
ν

=
=
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Phase Stability
Invented independently by Veksler (for microtrons!) and McMillan

)(tVc ( )( 1) / RFl fµ ν+ − ⋅

Invented independently by Veksler (for microtrons!) and McMillan

K

sφ tfRFs ∆= πφ 2

t

RFf/1

Electrons arriving EARLY get more energy, have a longer path, and arrive 
later on the next pass. Extremely important discovery in accelerator 
physics. McMillan used same idea to design first electron synchrotron.
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Generic Modern Synchrotron

Focusing

RF Acceleration Bending

Spokes are user stations for this X-ray ring source
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Spokes are user stations for this X ray ring source



Synchrotron Phase Stability

Edwin McMillan discovered phase stability independently of 
Veksler and used the idea to design first large electron synchrotron.

)(tVc / RFh f
φ tfRF∆= πφ 2

K

t

sφ tfRFs ∆πφ 2

t

f/1 RFf/1

/RFh Lf cβ=
Harmonic number: # of RF 

ill ti i l ti
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RFf β oscillations in a revolution



Transition Energy
Beam energy where speed increment effect balances path length 
change effect on accelerator revolution frequency. Revolution 
frequency independent of beam energy to linear order We will

Below Transistion Energy: Particles arriving EARLY get less acceleration

frequency independent of beam energy to linear order. We will 
calculate in a few weeks

Below Transistion Energy: Particles arriving EARLY get less acceleration 
and speed increment, and arrive later, with repect to the center of the bunch, 
on the next pass. Applies to heavy particle synchrotrons during first part of 
acceleration when the beam is non-relativistic and accelerations stillacceleration when the beam is non relativistic and accelerations still 
produce velocity changes.

Above Transistion Energy: Particles arriving EARLY get more energy haveAbove Transistion Energy: Particles arriving EARLY get more energy, have 
a longer path, and arrive later on the next pass. Applies for electron 
synchrotrons and heavy particle synchrotrons when approach relativistic 
velocities. As seen before, Microtrons operate here.
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velocities. As seen before, Microtrons operate here.



Ed McMillan

Vacuum chamber for 
electron synchrotron 
being packed for shipment 
to Smithsonian
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Full Electron Synchrotron
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GE Electron Synchrotron

Elder, F. R.; Gurewitsch, A. M.; Langmuir, R. V.; Pollock, H. C., "Radiation from 
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, ; , ; g , ; , ,
Electrons in a Synchrotron" (1947) Physical Review, vol. 71, Issue 11, pp. 829-830



Cosmotron (First GeV Accelerator)
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BNL Cosmotron and Shielding
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Cosmotron Magnet
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Cosmotron People
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Bevatron
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Designed to discover the antiproton; Largest Weak Focusing Synchrotron



Strong Focusing

• Betatron oscillation work has showed us that, apart from 
bend plane focusing, a shaped field that focuses in one 
t di ti d f i th thtransverse direction, defocuses in the other

• Question: is it possible to develop a system that focuses in 
both directions simultaneously?both directions simultaneously?

• Strong focusing: alternate the signs of focusing and 
defocusing: get net focusing!!

Order doesn’t 
matter
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Linear Magnetic Lenses: Quadrupoles
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Source: Danfysik Web site



Weak vs. Strong Benders
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Comment on Strong Focusing

Last time neglected to mention one main advantage of 
strong focusing. In weak focusing machines, n < 1 for 
stability. Therefore, the fall-off distance, or field gradient 
cannot be too high. There is no such limit for strong 
focusing.focusing.

1n

is now allowed, leading to large field gradients and 
relatively short focal length magnetic lenses. This tighter 
focusing is what allows smaller beam sizes. Focusing 
gradients now limited only by magnet construction issues 
(pole magnetic field limits)
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(pole magnetic field limits).



First Strong-Focusing Synchrotron

Cornell 1 GeV Electron Synchrotron (LEPP AP Home Page)
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Cornell 1 GeV Electron Synchrotron (LEPP-AP Home Page)



Alternating Gradient Synchrotron (AGS)
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CERN PS
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25 GeV Proton Synchrotron



CERN SPS
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Eventually 400 GeV protons and antiprotons



FNAL
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First TeV-scale accelerator; Large Superconducting Benders



LEP Tunnel (Now LHC!)

Empty LHC
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Storage Rings

• Some modern accelerators are designed not to “accelerate” 
much at all, but to “store” beams for long periods of time 
th t b f ll d b i t lthat can be usefully used by experimental users.
– Colliders for High Energy Physics. Accelerated beam-

accelerated beam collisions are much more energeticaccelerated beam collisions are much more energetic 
than accelerated beam-target collisions. To get to the 
highest beam energy for a given acceleration system 
design a colliderdesign a collider

– Electron storage rings for X-ray production: circulating 
electrons emit synchrotron radiation for a wide variety y y
of experimental purposes.
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Princeton-Stanford Collider
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SPEAR
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Eventually became leading synchrotron radiation machine



Cornell 10 GeV ES and CESR
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SLAC’s PEP II B-factory
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ALADDIN at Univ. of Wisconsin
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VUV Ring at NSLS
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VUV ring “uncovered”



Berkeley’s ALS
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Argonne APS
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ESRF
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Comment on Strong Focusing

Last time neglected to mention one main advantage of 
strong focusing. In weak focusing machines, n < 1 for 
stability. Therefore, the fall-off distance, or field gradient 
cannot be too high. There is no such limit for strong 
focusing.focusing.

1n

is now allowed, leading to large field gradients and 
relatively short focal length magnetic lenses. This tighter 
focusing is what allows smaller beam sizes. Focusing 
gradients now limited only by magnet construction issues 
(pole magnetic field limits)
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(pole magnetic field limits).



Linear Beam Optics Outline
• Particle Motion in the Linear Approximation
• Some Geometry of Ellipses
• Ellipse Dimensions in the β-function Descriptionp β p
• Area Theorem for Linear Transformations
• Phase Advance for a Unimodular Matrix

– Formula for Phase Advance
– Matrix Twiss Representation
– Invariant Ellipses Generated by a Unimodular Linear 

Transformation
• Detailed Solution of Hill’s Equation

– General Formula for Phase Advance
– Transfer Matrix in Terms of β-functionβ
– Periodic Solutions

• Non-periodic Solutions
– Formulas for β-function and Phase Advance
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Formulas for β function and Phase Advance
• Beam Matching



Linear Particle Motion

Fundamental Notion: The Design Orbit is a path in an Earth-
fixed reference frame, i.e., a differentiable mapping from 
[0,1] to points within the frame. As we shall see as we go on, 
it generally consists of arcs of circles and straight lines.

3[0 1] R

( ) ( ) ( ) ( )( )
3               :[0,1] R

   , ,X X Y Z

σ

σ σ σ σ σ

→

→ =
r

Fundamental Notion: Path Length

2 2 2
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

2 2 2dX dY dZds d
d d d

σ
σ σ σ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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The Design Trajectory is the path specified in terms of the 
path length in the Earth-fixed reference frame. For a 
relativistic accelerator where the particles move at the 
velocity of light, Ltot=cttot.

3

( ) ( ) ( ) ( )( )
3               :[0, ] R

  , ,
tots L

s X s X s Y s Z s

→

→ =
r
( ) ( ) ( ) ( )( )

The first step in designing any accelerator, is to specify 
b di t l ti th t i t t ith thbending magnet locations that are consistent with the arc 
portions of the Design Trajectory.
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Betatron Design Trajectory

3               :[0, 2 ] Rs Rπ →

( ) ( ) ( )( )  cos / , sin / ,0s X s R s R R s R→ =
r

Use path length s as independent variable instead of t in the 
dynamical equations.

1d d
=

cds R dtΩ
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Betatron Motion in s

( )
2

2 2
2 1 c c

d r pn r R
dt p
δ δ ∆

+ − Ω = Ω

2
2

2        0c

p
d z n z
dt
δ δ+ Ω =

dt
⇓

( )2

2 2

1 1nd r pr
ds R R p
δ δ

− ∆
+ =

2

2 2        0

ds R R p
d z n z
ds R
δ δ+ =
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Bend Magnet Geometry

ŷ
B
r

x̂

Rectangular Magnet of Length L
Sector Magnet

x̂x
ẑ

ρ ρ θ/2
θ
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Bend Magnet Trajectory
For a uniform magnetic field

( )d mV E V B
dt
γ ⎡ ⎤= + ×⎣ ⎦

r
r r r

( )

( )

x
z y

z

d mV qV B
dt

d mV V B

γ

γ

= −

( )z
x yqV B

dt
γ

=

2
2

2 0x
c x

d V V
dt

+ Ω =
2

2
2 0z

c z
d V V
dt

+ Ω =
dt dt

For the solution satisfying boundary conditions:

( ) ( )( ) ( )( )cos 1 cos 1 /pX t t t qB mρ γ= Ω = Ω Ω =

( ) ( ) 0 ˆ0 0       0 zX V V z= =
r r

( ) ( )( ) ( )( )cos 1 cos 1      /c c c y
y

X t t t qB m
qB

ρ γ= Ω − = Ω − Ω =

( ) ( ) ( )s in s inc c
y

pZ t t t
q B

ρ= Ω = Ω
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Magnetic Rigidity

The magnetic rigidity is:

y
pB B
q

ρ ρ= =

It depends only on the particle momentum and charge, and is a convenient way to 
characterize the magnetic field. Given magnetic rigidity and the required bend radius, 
the required bend field is a simple ratio. Note particles of momentum 100 MeV/c
have a rigidity of 0.334 T m.

Long Dipole Magnet
Normal Incidence (or exit)

Dipole Magnet

( )( )2sin / 2BL Bρ θ= ( )sinBL Bρ θ=
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Natural Focusing in Bend Plane

P b d T jPerturbed Trajectory

Design Trajectory

Can show that for either a displacement perturbation or angular perturbation 
f th d i t j tfrom the design trajectory

2d x x 2d y y
( )2 2

xds sρ
= −

( )2 2
y

y y
ds sρ

= −
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Quadrupole Focusing

( ) ( )( )ˆ ˆ,B x y B s xy yx′= +
r

( ) ( )yx
vv        

ddm qB s x m qB s y
ds ds

γ γ′ ′= − =

( ) ( )2 2

2 20       0
B s B sd x d yx y

ds B ds Bρ ρ
′ ′

+ = − =

Combining with the previous slide

( ) ( )2 21 1B Bd d ⎡ ⎤⎡ ⎤′ ′

( )
( )

( )
( )2 2

2 2 2 2

1 10       0
x y

B s B sd x d yx y
ds s B ds s Bρ ρ ρ ρ

⎡ ⎤⎡ ⎤′ ′
+ + = + − =⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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Hill’s Equation

Define focusing strengths (with units of m-2)

( ) ( )( ) ( )
( )

( )
( )

2 2

1 1      x y
x y

B s B s
k s k

s B s Bρ ρ ρ ρ
′ ′

= + = −

( ) ( )
2 2

2 20       0x y
d x d yk s x k s y
ds ds

+ = + =

Note that this is like the harmonic oscillator, or exponential for constant K, but more 
general in that the focusing strength, and hence oscillation frequency depends on s

ds ds
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Energy Effects

( ) ( )( )p p∆

( )1 /p pρ + ∆

( ) ( )( )1 cos /
y

p px s s
eB p

ρ∆
∆ = −

ρ

This solution is not a solution to Hill’s equation directly, but is a solution to the 
inhomogeneous Hill’s Equations

( )
( )

( )
2

2 2

1 1

x x

B sd x px
ds s B s pρ ρ ρ

⎡ ⎤′ ∆
+ + =⎢ ⎥
⎢ ⎥⎣ ⎦

( )
( )

( )
2

2 2

1 1

y y

B sd y py
ds s B s pρ ρ ρ

⎡ ⎤′ ∆
+ − =⎢ ⎥
⎢ ⎥⎣ ⎦
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Comment on Design Trajectory

The notion of specifying curves in terms of their path length 
is standard in courses on the vector analysis of curves Ais standard in courses on the vector analysis of curves. A 
good discussion in a Calculus book is Thomas, Calculus and 
Analytic Geometry, 4th Edition, Articles 14.3-14.5. Most 

t l i b k h i il d d dvector analysis books have a similar, and more advanced 
discussion under the subject of “Frenet-Serret Equations”. 
Because all of our design trajectories involve only arcs of 
circles and straight lines (dipole magnets and the drift 
regions between them define the orbit), we can concentrate 
on a simplified set of equations that “only” involve theon a simplified set of equations that only  involve the 
radius of curvature of the design orbit. It may be worthwhile 
giving a simple example.
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4-Fold Symmetric Synchrotron
x̂

ẑ0 0s = 1s
verticalŷ

ρ

7s 2 / 2s L ρπ= +

verticaly

x̂
ẑ

L

3s6 23s s=
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5s 4 22s s=



Its Design Trajectory

( )0 0 0s s L s< < =( )
( ) ( )( ) ( )( )( )

1

1 1 1 2

                                0,0,                                                                0

0,0, cos / 1,0,sin /                                   

0

s s L s

L s s s s s s sρ ρ ρ

ρ

< < =

+ − − − < <

−( ) ( )( )1 0 0L s s s s sρ+ + − − < <               ,0ρ( ) ( )( )
( ) ( )( ) ( )( )( )

( ) ( )( )

2 2 3

3 3 3 4

, 1,0,0                                                 

,0, sin / ,0,cos / 1                

2 0 0 0 1

L s s s s s

L L s s s s s s s

L L s s

ρ

ρ ρ ρ ρ ρ

ρ

+ + < <

− − + + − − − − < <

− − + − − s s s< <( ) ( )( )4              2 ,0, 0,0, 1                                     L L s sρ− − + − −

( ) ( )( ) ( )( )( )
( ) ( )( )

4 5

5 5 5 6

          

2 ,0,0 1 cos / ,0, sin /                      

0 1 0 0

s s s

L s s s s s s s

L s s s s s

ρ ρ ρ ρ

ρ ρ

< <

− − + − − − − < <

+ < <( ) ( )( )
( ) ( )( )

6 6 7

7

               ,0, 1,0,0                                                   

,0, sin / ,0,1 cos

L s s s s s

s s s

ρ ρ

ρ ρ ρ ρ

− − − + − < <

− − + − − −( )( )( )7 7 2/                           4s s s sρ < <
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Inhomogeneous Hill’s Equations

Fundamental transverse equations of motion in particle 
accelerators for small deviations from design trajectory

( )
( )

( )
2

2 2

1 1B sd x px
ds s B s pρ ρ ρ

⎡ ⎤′ ∆
+ + =⎢ ⎥
⎢ ⎥⎣ ⎦( ) ( )

( )
( )

( )
2

2 2

1 1

x xds s B s p

B sd y py
d B

ρ ρ ρ⎢ ⎥⎣ ⎦
⎡ ⎤′ ∆

+ − =⎢ ⎥
⎢ ⎥( ) ( )2 2

y yds s B s pρ ρ ρ⎢ ⎥⎣ ⎦

ρ radius of curvature for bends, B'  transverse field gradient ρ g
for magnets that focus (positive corresponds to horizontal 
focusing), ∆p/p momentum deviation from design 
momentum Homogeneous equation is 2nd order linear
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momentum. Homogeneous equation is 2 order linear 
ordinary differential equation.



Dispersion
From theory of linear ordinary differential equations, the general solution to the 
inhomogeneous equation is the sum of any solution to the inhomogeneous 
equation, called the particular integral, plus two linearly independent solutions 
t th h ti h lit d b dj t d t t fto the homogeneous equation, whose amplitudes may be adjusted to account for 
boundary conditions on the problem.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2=        =p x x p y yx s x s A x s B x s y s y s A y s B y s+ + + +

Because the inhomogeneous terms are proportional to ∆p/p, the particular 
solution can generally be written as

( ) ( ) ( ) ( )p pD D∆ ∆( ) ( ) ( ) ( )=        =p x p y
p px s D s y s D s

p p
where the dispersion functions satisfy

( ) ( )22 1 1 1 1d DB Bd D ⎡ ⎤⎡ ⎤′ ′

( )
( )

( ) ( )
( )

( )

22

2 2 2 2

1 1 1 1      yx
x y

x x y y

d DB s B sd D D D
ds s B s ds s B sρ ρ ρ ρ ρ ρ

⎡ ⎤⎡ ⎤′ ′
+ + = + − =⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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M56
In addition to the transverse effects of the dispersion, there are important effects of the 
dispersion along the direction of motion. The primary effect is to change the time-of-
arrival of the off-momentum particle compared to the on-momentum particle which 
traverses the design trajectorytraverses the design trajectory.

( )ds pz D s ds
p

ρ
ρ
⎛ ⎞∆

∆ = + −⎜ ⎟
⎝ ⎠

( ) ( ) ( )
= p dsd z D s

p sρ
∆

∆
( )ρ +

ds

( ) pD s
p
∆

pρ ⎝ ⎠

Design Trajectory Dispersed Trajectory

p

( )
( )

( )
( )

2

1

56

s
yx

x ys

D sD s
M ds

s sρ ρ
⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭
∫
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Solutions Homogeneous Eqn.
Dipole

( ) ( )( ) ( )( ) ( )/ i / ix s x s⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟
( )

( )
( )( ) ( )( )
( )( ) ( )( )

( )

( )
cos / sin /

sin / / cos /

i
i i

ii i

x s x ss s s s
dx dxs ss s s s
ds ds

ρ ρ ρ

ρ ρ ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

DriftDrift

( ) ( )1 i
i

x s x ss s⎛ ⎞ ⎛ ⎞−⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟( ) ( )0 1

i

i
dx dxs s
ds ds

⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Quadrupole in the focusing direction

( ) ( )( ) ( )( ) ( )i /x s x sk k k⎛ ⎞⎛ ⎞ ⎛ ⎞

/k B Bρ′=

( )

( )
( )( ) ( )( )
( )( ) ( )( )

( )

( )
cos sin /

sin cos

ii i

ii i

x s x sk s s k s s k
dx dxs sk k s s k s sds ds

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠( ) ( )ds ds⎝ ⎠ ⎝ ⎠⎝ ⎠

Thin Focusing Lens (limiting case when argument goes to 
zero!)

( ) ( )1 0x s x sε ε⎛ ⎞ ⎛ ⎞+ −
⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟( ) ( )1/ 1dx dxfs s

ds ds
ε ε

⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟−+ −⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Thi D f i L h i f f
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Thin Defocusing Lens: change sign of  f



Solutions Homogeneous Eqn.
Dipole

( ) ( )( ) ( )( ) ( )/ i / ix s x s⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟
( )

( )
( )( ) ( )( )
( )( ) ( )( )

( )

( )
cos / sin /

sin / / cos /

i
i i

ii i

x s x ss s s s
dx dxs ss s s s
ds ds

ρ ρ ρ

ρ ρ ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

DriftDrift

( ) ( )1 i
i

x s x ss s⎛ ⎞ ⎛ ⎞−⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟( ) ( )0 1

i

i
dx dxs s
ds ds

⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Quadrupole in the focusing direction

( ) ( )( ) ( )( ) ( )i /x s x sk k k⎛ ⎞⎛ ⎞ ⎛ ⎞

/k B Bρ′=

( )

( )
( )( ) ( )( )
( )( ) ( )( )

( )

( )
cos sin /

sin cos

ii i

ii i

x s x sk s s k s s k
dx dxs sk k s s k s sds ds

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠( ) ( )ds ds⎝ ⎠ ⎝ ⎠⎝ ⎠

Quadrupole in the defocusing direction /k B Bρ′=Quadrupole in the defocusing direction

( ) ( )( ) ( )( ) ( )cosh sinh / ii i
x s x sk s s k s s k⎛ ⎞⎛ ⎞ ⎛ ⎞− − − − −

⎜ ⎟⎜ ⎟ ⎜ ⎟

/k B Bρ=

( )
( )( ) ( )( )
( )( ) ( )( ) ( )sinh cosh

i i

ii i

dx dxs sk k s s k s sds ds

⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − − − −⎝ ⎠ ⎝ ⎠⎝ ⎠
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Transfer Matrices
Dipole with bend Θ (put coordinate of final position in solution)

( ) ( ) ( ) ( )iafter beforex s x s⎛ ⎞ ⎛ ⎞
⎛ ⎞Θ Θ⎜ ⎟ ⎜ ⎟

( )
( )

( ) ( )
( ) ( )

( )
( )

cos sin
sin / cos

after before

after before
dx dxs s
ds ds

ρ
ρ

⎛ ⎞Θ Θ⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟− Θ Θ⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ds ds⎝ ⎠ ⎝ ⎠

DriftDrift

( ) ( )1ft b fx s x sL
⎛ ⎞ ⎛ ⎞

⎛ ⎞⎜ ⎟ ⎜ ⎟
( )
( )

( )
( )

1
0 1

after before
drift

after before

x s x sL
dx dxs s
ds ds

⎛ ⎞⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Quadrupole in the focusing direction length L

( )
( )

( ) ( )
( ) ( )

( )
( )

cos sin /

i

after beforex s x sk L k L k
dx dx

k k L k L

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

Quadrupole in the defocusing direction length L

( ) ( ) ( ) ( )sin cosafter befores sk k L k L
ds ds

⎜ ⎟⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Quadrupole in the defocusing direction length L

( ) ( ) ( ) ( )cosh sinh /after beforex s x sk L k L k⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎜ ⎟
( )
( )

( ) ( )
( ) ( )

( )
( )sinh cos

f f

after before
dx dxs sk k L k L
ds ds

⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
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Thin Lenses

f –ff

Thin Focusing Lens (limiting case when argument goes to 
zero!)

( ) ( )1 0lens lensx s x sε ε⎛ ⎞ ⎛ ⎞+ −
⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟( ) ( )1/ 1lens lens

dx dxfs s
ds ds

ε ε
⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟−+ −⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Composition Rule: Matrix Multiplication!

Element 1 Element 2

0s 1s 2s

( )
( )

( )
( )

1 0
1

x s x s
M

x s x s
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

( )
( )

( )
( )

2 1
2

x s x s
M

x s x s
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠( ) ( )1 0x s x s⎝ ⎠ ⎝ ⎠ ( ) ( )2 1x s x s⎝ ⎠ ⎝ ⎠

( )
( )

( )
( )

2 0
2 1

x s x s
M M

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟′ ′( ) ( )2 1

2 0x s x s⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

More generally

1 2 1...tot N NM M M M M−=

More generally
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Some Geometry of Ellipses
yy

Equation for an upright ellipse

x

b
a1

22

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b
y

a
x

⎠⎝⎠⎝

In beam optics, the equations for ellipses are normalized (by 
multiplication of the ellipse equation by ab) so that the area of 
the ellipse divided by π appears on the RHS of the defining 
equation. For a general ellipseq g p

DCyBxyAx =++ 22 2
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The area is easily computed to be

Area D Eqn (1)
2BAC −

=≡ ε
π

S th ti i i l tl

Eqn. (1)

εβαγ =++ 22 2 yxyx

So the equation is equivalently

and,, CBA
=== βαγ

222
 and    ,   ,

BACBACBAC −−−
βαγ
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When normalized in this manner, the equation coefficients 
clearly satisfy

12 =−αβγ

Example: the defining equation for the upright ellipse may be 
rewritten in following suggestive way

ε==+ aby
b
ax

a
b 22

β = a/b and γ = b/a,   note ,max βε== ax γε== bymax

USPAS Accelerator Physics  Jan. 2011



General Tilted Ellipse
yy

Needs 3 parameters for a complete
description. One way

y=sx

x

b

a

( ) ε==−+ absxy
b
ax

a
b 22

a

where s is a slope parameter, a is the maximum
extent in the x-direction and the y-intercept occurs at ±b and againextent in the x-direction, and the y-intercept occurs at ±b, and again 
ε is the area of the ellipse divided by π

⎞
⎜
⎛ aaab 2

ε==+−⎟
⎠

⎞
⎜⎜
⎝

⎛
+ aby

b
axy

b
asx

b
as

a
b 22

2
2 21
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Identify

aaab ⎞
⎜
⎛ 2

b
as

b
a

b
as

a
b

=−=⎟
⎠

⎞
⎜⎜
⎝

⎛
+= βαγ      ,    ,1 2

2

Note that βγ – α2 = 1 automatically, and that the equation for 
ellipse becomes

( ) βεαβ =++ 22 xyx

by eliminating the (redundant!) parameter γ
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Ellipse Dimensions in the β-function 
Descriptionp

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− γε

γ
εα ,

y=sx=– α x / β

β/b
γε ⎞

⎜⎜
⎛

−
εαβε

⎠⎝
y

x

βε /=b

ε

⎠
⎜⎜
⎝ β

αβε ,

βε=a
γ
ε

As for the upright ellipse γε=maxy,max βε=x

Wille: page 81

USPAS Accelerator Physics  Jan. 2011

Wille: page 81



Area Theorem for Linear Optics
Under a general linear transformation

⎞
⎜
⎛⎞

⎜
⎛⎞

⎜
⎛ xMMx 1211'

⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠

⎞
⎜⎜
⎝

⎛
y
x

MM
MM

y
x

2221

1211

'

an ellipse is transformed into another ellipse. Furthermore, if 
det (M) = 1, the area of the ellipse after the transformation is 
the same as that before the transformation.

Pf: Let the initial ellipse, normalized as above, be

0
2

00
2

0 2 εβαγ =++ yxyx
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BBecause

( ) ( )1 1

11 12 'M Mx x
− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟=⎜ ⎟ ⎜ ⎟( ) ( )1 1

21 22
'y yM M− −

⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
The transformed ellipse is

0
22 2 εβαγ =++ yxyx

p

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

2 21 1 1 1
0 0 011 11 21 21

1 1 1 1 1 1 1 1
0 0 0

                       2M M M M

M M M M M M M M

γ γ α β

α γ α β

− − − −

− − − − − − − −

= + +

= + + +( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 011 12 11 22 12 21 21 22

2 21 1 1 1
0 0 012 12 22 22

                       2M M M M

γ β

β γ α β− − − −= + +
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Because (verify!)

( )2 2βγ α β γ α− = −( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0 0 0

2 2 2 21 1 1 1 1 1 1 1

21 12 11 22 11 22 12 21

                    

2M M M M M M M M

βγ α β γ α

− − − − − − − −

=

× + −

( )( )22 1
0 0 0                                 det Mβ γ α −= −

th f th t f d lli (di id d b ) i b E (1)the area of the transformed ellipse (divided by π) is, by Eqn. (1) 

|d t|Area 0 Mε |det |
det 

012
000

0 M
M

ε
αγβ

ε
π

=
−

==
−
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Tilted ellipse from the upright ellipse
I h il d lli h di i i d b h l i hIn the tilted ellipse the y-coordinate is raised by the slope with 
respect to the un-tilted ellipse

⎞⎛⎞⎛⎞⎛ xx 01'
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
y
x

sy
x

1
01

'
'

( )1
0 0 0 21

,      0,       ,       b a M s
a b

γ α β −= = = = −

b
as

b
as

b
a

a
b

=−=+=∴ βαγ      ,     ,   2

bbba
Because det (M)=1, the tilted ellipse has the same area as the 
upright ellipse, i.e., ε = ε0.
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Phase Advance of a Unimodular Matrix
Any two-by-two unimodular (Det (M) = 1) matrix with 
|Tr M| < 2 can be written in the form

( ) ( )µ
αγ
βα

µ sincos
10
01

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=M

⎠⎝⎠⎝

The phase advance of the matrix, µ, gives the eigenvalues of the 
t i λ ±iµ d (T M)/2 F th β 2 1

Pf: The equation for the eigenvalues of M is

matrix λ = e±iµ, and cos µ = (Tr M)/2. Furthermore βγ–α2=1

( ) 012211
2 =++− λλ MM
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Because M is real, both λ and λ* are solutions of the 
quadratic. Because

( )( ) ( )( )22/Tr1
2

Tr MiM
−±=λ

For |Tr M| < 2, λ λ* =1 and so λ1,2 = e±iµ. Consequently cos µ 
= (Tr M)/2. Now the following matrix is trace-free.

⎞⎛ MM

( ) ⎟
⎟
⎞

⎜⎜
⎜
⎜
⎛

−

−

=⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2cos

10
01

1122

12
2211

MM

MMM

M µ

⎠
⎜⎜
⎝

⎠⎝
2

10 1122
21

MMM
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Simply choose

γβα 21122211 MMMM −
µ

γ
µ

β
µ

α
sin

     ,
sin

    ,
sin2

21122211 −===

and the sign of µ to properly match the individual matrix 
l i h β i il ifi d h β 2elements with β > 0. It is easily verified that βγ – α2 = 1. Now

( ) ( )µβα
µ 2sin2cos

012 ⎞
⎜⎜
⎛

+
⎞

⎜⎜
⎛

=M ( ) ( )µ
αγ

µ 2sin2cos
10 ⎠

⎜⎜
⎝ −−

+
⎠

⎜⎜
⎝

M

⎞⎛⎞⎛
and more generally

( ) ( )µ
αγ
βα

µ nnM n sincos
10
01

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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Therefore, because sin and cos are both bounded functions, 
the matrix elements of any power of M remain bounded as 
long as |Tr (M)| < 2long as |Tr (M)|  2.

NB, in some beam dynamics literature it is (incorrectly!) 
t t d th t th l t i t |T (M)| 2 b d d≤stated that the less stringent |Tr (M)|    2 ensures boundedness 

and/or stability. That equality cannot be allowed can be 
immediately demonstrated by counterexample. The upper 

≤

triangular or lower triangular subgroups of the two-by-two 
unimodular matrices, i.e., matrices of the form

⎞
⎜
⎛⎞

⎜
⎛ 011 x

clearly have unbounded powers if |x| is not equal to 0.

⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜⎜
⎝

⎛
1
01

or      
10

1
x

x
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Significance of matrix parameters
Another way to interpret the parameters α, β, and γ, which 
represent the unimodular matrix M (these parameters are 
sometimes called the Twiss parameters or Twiss representationsometimes called the Twiss parameters or Twiss representation 
for the matrix) is as the “coordinates” of that specific set of 
ellipses that are mapped onto each other, or are invariant, under 
the linear action of the matrix. This result is demonstrated in

Thm: For the unimodular linear transformation

( ) ( )µβα
µ sincos

01 ⎞
⎜⎜
⎛

+
⎞

⎜⎜
⎛

=M ( ) ( )µ
αγ

µ sincos
10 ⎠

⎜⎜
⎝ −−

+
⎠

⎜⎜
⎝

M

with |Tr (M)| < 2, the ellipses
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cyxyx =++ 22 2 βαγ cyxyx =++ 2 βαγ
are invariant under the linear action of M, where c is any 
constant. Furthermore, these are the only invariant ellipses. Note , y p
that the theorem does not apply to ±I, because |Tr (±I)| =  2.

Pf: The inverse to M is clearlyPf: The inverse to M is clearly

( ) ( )µ
αγ
βα

µ sincos
10
011

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−M

αγ10 ⎠⎝⎠⎝
By the ellipse transformation formulas, for example

( ) ( )( ) ( ) βµαµαµαµµβγµββ +++−+= 222 sincossincossin2sin' ( )
( )

( ) ββµµ

µβαµβµβααµβ

=+=

++−+=
22

2222222

cossin    
sincossin21sin    
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Similar calculations demonstrate that α' = α and γ' = γ. As det (M) = 
1, c' = c, and therefore the ellipse is invariant. Conversely, suppose 
that an ellipse is invariant. By the ellipse transformation formula,that an ellipse is invariant. By the ellipse transformation formula, 
the specific ellipse 

is invariant under the transformation by M only if
εβαγ =++ 22 2 yxyx iii

is invariant under the transformation by M only if

( ) ( )( ) ( )
( )( ) ( )( )sinsincossin21sinsincos

sinsinsincos2sincos
2

22
ii ⎟
⎞

⎜
⎜
⎛⎟
⎞

⎜
⎜
⎛

+−−−
−−

=
⎟
⎞

⎜
⎜
⎛

α
γ

µγµαµµβγµβµαµ
µγµγµαµµαµ

α
γ

( )( ) ( )( )
( ) ( )( ) ( )sincossinsincos2sin

sinsincossin21sinsincos
22

i

i

i

i

i

⎞
⎜
⎛

⎟
⎠

⎜
⎜

⎝⎟
⎟
⎠

⎜⎜
⎜

⎝ ++−
+−−−=

⎟
⎠

⎜
⎜

⎝

γ

β
α

µαµµβµαµµβ
µγµαµµβγµβµαµ

β
α

,       vTT M

i

iM
r

≡
⎟
⎠

⎜
⎜
⎜

⎝

≡
β
α
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i.e., if the vector     is ANY eigenvector of TM with eigenvalue 1.
All possible solutions may be obtained by investigating the 
eigenvalues and eigenvectors of TM. Now

vr

eigenvalues and eigenvectors of TM. Now

( ) 0Det hen solution w a has    =−= ITvvT MM λλ λλ
rr

i.e.,

( )( )2 22 4cos 1 1 0λ µ λ λ⎡ ⎤+ − + − =⎣ ⎦

,

Th f M t t f ti t i T ith t l tTherefore, M generates a transformation matrix TM with at least 
one eigenvalue equal to 1. For there to be more than one solution 
with λ = 1,

2 21 2 4cos 1 0,    cos 1,    or  M Iµ µ⎡ ⎤+ − + = = = ±⎣ ⎦
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and we note that all ellipses are invariant when M = ±I. But, these 
two cases are excluded by hypothesis. Therefore, M generates a 
transformation matrix TM which always possesses a singletransformation matrix TM which always possesses a single 
nondegenerate eigenvalue 1; the set of eigenvectors corresponding 
to the eigenvalue 1, all proportional to each other, are the only 

t h t ( β ) i ld ti f thvectors whose components (γi, αi, βi) yield equations for the 
invariant ellipses. For concreteness, compute that eigenvector with 
eigenvalue 1 normalized so βiγi – αi

2 = 1

( ) ⎟
⎞

⎜
⎜
⎜
⎛

=
⎟
⎞

⎜
⎜
⎜
⎛

−
−

=
⎟
⎞

⎜
⎜
⎜
⎛

= α
γ

βα
γ

2/
/

122211

1221

,1 MMM
MM

v i

i

i
r

cvv i /11
rr ε=All other eigenvectors with eigenvalue 1 have , for

⎠
⎜
⎝⎠

⎜
⎝⎠

⎜
⎝ ββ 1i
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cvv i /,11 εAll other eigenvectors with eigenvalue 1 have                     , for 
some value c.



Because Det (M) =1, the eigenvector clearly yields the 
invariant ellipse

iv ,1
r

.2 22 εβαγ =++ yxyx
Likewise, the proportional eigenvector      generates the similar 
lli

1vr

ellipse
( ) εβαγε

=++ 22 2 yxyx
c

Because we have enumerated all possible eigenvectors with 
eigenvalue 1, all ellipses invariant under the action of M, are of the 
form

c

form

cyxyx =++ 22 2 βαγ
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To summarize, this theorem gives a way to tie the mathematical 
representation of a unimodular matrix in terms of its α, β, and γ, 
and its phase advance, to the equations of the ellipses invariantand its phase advance, to the equations of the ellipses invariant 
under the matrix transformation. The equations of the invariant 
ellipses when properly normalized have precisely the same α, β, 

d i th T i t ti f th t i b t iand γ as in the Twiss representation of the matrix, but varying c.

Finally note that throughout this calculation c acts merely as a 
scale parameter for the ellipse All ellipses similar to the startingscale parameter for the ellipse. All ellipses similar to the starting 
ellipse, i.e., ellipses whose equations have the same α, β, and γ, 
but with different c, are also invariant under the action of M. 
L i ill b h h llLater, it will be shown that more generally

( )( ) βαββαγε /'''2 2222 xxxxxxx ++=++=
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Applications to transverse beam optics
When the motion of particles in transverse phase space is considered, 
linear optics provides a good first approximation of the transverse 
particle motion Beams of particles are represented by ellipses inparticle motion. Beams of particles are represented by ellipses in 
phase space (i.e. in the (x, x') space). To the extent that the transverse 
forces are linear in the deviation of the particles from some pre-
defined central orbit, the motion may analyzed by applying ellipse 
transformation techniques.

Transverse Optics Conventions: positions are measured in terms of 
length and angles are measured by radian measure. The area in phase 
space divided by π ε measured in m rad is called the emittance Inspace divided by π, ε, measured in m-rad, is called the emittance. In 
such applications, α has no units, β has units m/radian. Codes that 
calculate β, by widely accepted convention, drop the per radian when 

i l i i i li i h h i f di
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reporting results, it is implicit that the units for x' are radians. 



Linear Transport Matrix
Wi hi li i d i i f i l iWithin a linear optics description of transverse particle motion, 
the particle transverse coordinates at a location s along the beam 
line are described by a vector y

( )
( )

⎟

⎠

⎞

⎜
⎜

⎝

⎛

sdx
sx

( )
⎠⎝ ds

If the differential equation giving the evolution of x is linear, one 
d fi li t t t i M l ti th di tmay define a linear transport matrix Ms',s relating the coordinates 

at s' to those at s by
( ) ( ) ⎞

⎜
⎛⎞

⎜
⎛ sxsx '( )

( )
( )
( )⎟

⎠
⎜
⎜

⎝
=⎟

⎠
⎜
⎜

⎝
s

ds
dxMs

ds
dx ss ,''

USPAS Accelerator Physics  Jan. 2011



From the definitions the concatenation rule M = M M mustFrom the definitions, the concatenation rule Ms'',s = Ms'',s' Ms',s must 
apply for all s' such that s < s'< s'' where the multiplication is the 
usual matrix multiplication.

Pf: The equations of motion, linear in x and dx/ds, generate a 
motion with

( )
( )

( )
( )

( )
( )

( )
( )⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

s
d
dx

sx
MMs

d
dx

sx
Ms

d
dx

sx

s
d
dx

sx
M ssssssss ,'',''','','' '

'

''

''

( ) ( ) ( ) ( )
⎠⎝⎠⎝⎠⎝⎠⎝ dsdsdsds

for all initial conditions (x(s), dx/ds(s)), thus Ms'',s = Ms'',s' Ms',s.

Clearly Ms,s = I. As is shown next, the matrix Ms',s is in general a 
member of the unimodular subgroup of the general linear group.
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Ellipse Transformations Generated by 
Hill’s Equationq

The equation governing the linear transverse dynamics in a 
particle accelerator, without acceleration, is Hill’s equation*

( ) 02

2

=+ xsK
ds

xd Eqn. (2)

The transformation matrix taking a solution through an 
infinitesimal distance ds is

( )
( ) ( )

( )
( )

( )
( )

⎟

⎠

⎞

⎜
⎜

⎝

⎛
≡⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
+ sdx

sx
Msdx

sx

dK

ds

dssdx
dssx

sdss ,
1d

rad
1

* Strictly speaking, Hill studied Eqn. (2) with periodic K. It was first applied to circular accelerators which had a 
i di i i b h i f f h hi i d d i h fi ld f b i ill

( ) ( ) ( ) ( )
⎠⎝⎠⎝⎠⎝−⎠⎝ dsdsdssKds 1rad
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periodicity given by the circumference of the machine. It is a now standard in the field of beam optics, to still 
refer to Eqn. 2 as Hill’s equation, even in cases, as in linear accelerators, where there is no periodicity.



Suppose we are given the phase space ellipsepp g p p p

at location s, and we wish to calculate the ellipse parameters, after 
( ) ( ) ( ) εβαγ =++ 22 ''2 xsxxsxs

, p p ,
the motion generated by Hill’s equation, at the location s + ds

( ) ( ) ( ) '''2 22 εβαγ =+++++ xdssxxdssxdss( ) ( ) ( )βγ

Because, to order linear in ds, Det Ms+ds,s = 1, at all locations s, ε' = 
ε, and thus the phase space area of the ellipse after an infinitesimal , p p p
displacement must equal the phase space area before the 
displacement. Because the transformation through a finite interval 
in s can be written as a series of infinitesimal displacementin s can be written as a series of infinitesimal displacement 
transformations, all of which preserve the phase space area of the 
transformed ellipse, we come to two important conclusions:
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1 The phase space area is preserved after a finite integration of1. The phase space area is preserved after a finite integration of 
Hill’s equation to obtain Ms',s, the transport matrix which can 
be used to take an ellipse at s to an ellipse at s'. This 
conclusion holds generally for all s' and s.

2. Therefore Det Ms' s = 1 for all s' and s, independent of the s ,s , p
details of the functional form K(s). (If desired, these two 
conclusions may be verified more analytically by showing 
thatthat 

( ) ( ) ( ) ( ) ssss
ds
d

∀=−→=−    ,1       0 22 αγβαβγ( )
ds

may be derived directly from Hill’s equation.)
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Evolution equations for the α, 
β functionsβ

The ellipse transformation formulas give, to order linear in ds

( ) ( )sdsdss βαβ +−=+ 2( ) ( )sdss βαβ ++
rad

2

( ) ( ) ( ) ( ) rad 
rad

Kdsssdssdss βαγα ++−=+
rad

So

( )2d αβ ( ) ( )
rad

2 ss
ds
d αβ

−=

( )( ) ( ) ( )
rad

rad sKss
ds
d γβα

−=
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N h h f l i d d f h l f hNote that these two formulas are independent of the scale of the 
starting ellipse ε, and in theory may be integrated directly for 
β(s) and α(s) given the focusing function K(s). A somewhat β( ) ( ) g g ( )
easier approach to obtain β(s) is to recall that the maximum 
extent of an ellipse, xmax, is (εβ)1/2(s), and to solve the differential 
equation describing its evolution The above equations may beequation describing its evolution. The above equations may be 
combined to give the following non-linear equation for xmax(s) = 
w(s) = (εβ)1/2(s)

( )22 / dd ( ) ( )2

2 3

/ rad
.d w K s w

ds w
ε

+ =

Such a differential equation describing the evolution of theSuch a differential equation describing the evolution of the 
maximum extent of an ellipse being transformed is known as an 
envelope equation.
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I h ld b d f i h h β( ) 2( )/It should be noted, for consistency, that the same β(s) = w2(s)/ε
is obtained if one starts integrating the ellipse evolution 
equation from a different, but similar, starting ellipse. That this 

The envelope equation may be solved with the correct

q , , g p
is so is an exercise.

The envelope equation may be solved with the correct 
boundary conditions, to obtain the β-function. α may then be 
obtained from the derivative of β, and γ by the usual 

li i f l T f b d di i Cl Inormalization formula. Types of boundary conditions: Class I—
periodic boundary conditions suitable for circular machines or 
periodic focusing lattices, Class II—initial condition boundary p g y
conditions suitable for linacs or recirculating machines.
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Solution to Hill’s Equation in
Amplitude-Phase formp

To get a more general expression for the phase advance, consider 
in more detail the single particle solutions to Hill’s equation

( ) 02

2

=+ xsK
ds

xd

From the theory of linear ODEs, the general solution of Hill’s 
equation can be written as the sum of the two linearly independent 

d h i f ipseudo-harmonic functions

( ) ( ) ( )sBxsAxsx −+ +=

( ) ( ) ( )sieswsx µ±
± =

where
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are two particular solutions to Hill’s equation, provided that

( ) ( )d
22 cdcKwd µ

( )( ) ( ) ( ) ,       and        232 sw
s

dsw
wsK

ds
==+

µ

and where A, B, and c are constants (in s)

Eqns. (3)

, , ( )

That specific solution with boundary conditions x(s1) = x1 and 
dx/ds (s ) = x' hasdx/ds (s1)  x 1 has

( ) ( ) ( ) ( )
⎞

⎜
⎛

⎞

⎜
⎜
⎛

⎤⎡⎤⎡
⎞

⎜
⎛

−−

1

1

11
11

xesweswA
sisi µµ

( ) ( )
( ) ( ) ( )

( ) ⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠

⎜
⎜

⎝
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
+

=⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1

1

1
1

1
1 ''' 11 xe

sw
icswe

sw
icswB sisi µµ
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Therefore, the unimodular transfer matrix taking the solution at 
s = s1 to its coordinates at s = s2 is

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ⎞⎛
⎟
⎟
⎞

⎜
⎜
⎜
⎛

⎤⎡

∆∆−∆

⎞⎛ 1122

,
12

,
12

,
1

2

''

sinsin'cos
121212

xswswswswc
c

swsw
c

swsw
sw
sw

x

ssssss µµµ

( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( ) ( ) ⎟⎟
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⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
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⎜
⎜
⎜

⎝

∆+∆
∆⎥

⎦

⎤
⎢
⎣

⎡
−−

∆⎥⎦
⎤

⎢⎣
⎡ +−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

1

1

,
12

,
2

1

,
1

2

2

1

,2
1122

122

2

'sin'cos
cos''               

sin1
'

1212

12

12

x
x

c
swsw

sw
sw

sw
sw

sw
sw

c
swswswsw

swsw
c

x
x

ssss

ss

ss

µµ
µ

µ

( ) ( ) ⎠⎝ ⎦⎣ 12

where
s2

( ) ( ) ( )ds
sw

css
s

s
ss ∫=−=∆

2

1

12 212, µµµ
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Case I: K(s) periodic in s
Such boundary conditions, which may be used to describe 
circular or ring-like accelerators, or periodic focusing lattices, 
have K(s + L) = K(s) L is either the machine circumference orhave K(s + L) = K(s). L is either the machine circumference or 
period length of the focusing lattice.

It is natural to assume that there exists a unique periodic 
solution w(s) to Eqn. (3a) when K(s) is periodic. Here, we will 

hi b h i ill b h hassume this to be the case. Later, it will be shown how to 
construct the function explicitly. Clearly for w periodic

( ) ( ) dcLs

∫
+

i hφ( ) ( ) ( )ds
sw

sss
s

LL ∫=−= 2          with µµµφ

is also periodic by Eqn. (3b), and µL is independent of s.
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Th f i f i l i d dThe transfer matrix for a single period reduces to

( ) ( ) ( )
LLL c

sw
c

swsw µµµ sinsin'cos
2

⎟
⎞

⎜
⎜
⎛

−

( )
( ) ( ) ( ) ( ) ( ) ( )

LLL c
swsw

c
swswswsw

sw
c

cc

µµµ sin'cossin''1 22

⎞⎛⎞⎛

⎟
⎟

⎠
⎜
⎜
⎜

⎝
+⎥⎦

⎤
⎢⎣
⎡ +−

( ) ( )LL µ
αγ
βα

µ sincos
10
01

                       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

h th ( i di !) t i f tiwhere the (now periodic!) matrix functions are

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )s

ss
c

sws
c

swsws
β
αγβα

22 1     ,     ,' +
==−= ( )scc β

By Thm. (2), these are the ellipse parameters of the periodically 
repeating, i.e., matched ellipses.
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General formula for phase advance

L d

In terms of the β-function, the phase advance for the period is

( )∫=
L

L s
ds

0 β
µ

and more generally the phase advance between any two 
longitudinal locations s and s' is

( )∫=∆
'

,'

s

ss
ds
β

µ ( )∫,
s

ss sβ
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Transfer Matrix in terms of α and β
Al h i d l f i ki h l i f

( ) ⎞⎛ 'β

Also, the unimodular transfer matrix taking the solution from s 
to s' is

( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
⎟
⎟

⎞

⎜
⎜
⎜
⎜
⎜
⎛

∆−∆⎥
⎤

⎢
⎡ ∆+

−

∆∆+∆
=

ss

ssssss

ss

ssss

sss
s
s

M
,'

,',','

,'

sin'cos
sin'11

sin'sincos'

µαµβµαα

µββµαµ
β
β

( ) ( ) ( ) ( )( ) ( ) ( )( )
⎠

⎜
⎜
⎝

∆∆⎥
⎦

⎢
⎣ ∆−+ ssss

ss

s
sssss ,','

,'

sincos
'cos''

µαµ
βµααββ

Note that this final transfer matrix and the final expression for 
the phase advance do not depend on the constant c. This 
conclusion might have been anticipated because different 
particular solutions to Hill’s equation exist for all values of c butparticular solutions to Hill s equation exist for all values of c, but 
from the theory of linear ordinary differential equations, the final 
motion is unique once x and dx/ds are specified somewhere.
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Method to compute the β-function
Our previous work has indicated a method to compute the β-
function (and thus w) directly, i.e., without solving the differential 
equation Eqn. (3). At a given location s, determine the one-periodequation Eqn. (3). At a given location s, determine the one period 
transfer map Ms+L,s (s).  From this find µL (which is independent 
of the location chosen!) from cos µL = (M11+M22) / 2, and by 
h i th i f th t β( ) M ( ) / i i itichoosing the sign of µL so that β(s) = M12(s) / sin µL is positive. 

Likewise, α(s) = (M11-M22) / 2 sin µL. Repeat this exercise at 
every location the β-function is desired.

By construction, the beta-function and the alpha-function, and 
hence w are periodic because the single-period transfer map ishence w, are periodic because the single-period transfer map is 
periodic. It is straightforward to show w=(cβ(s))1/2 satisfies the 
envelope equation.
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Courant-Snyder Invariant
Consider now a single particular solution of the equations ofConsider now a single particular solution of the equations of 
motion generated by Hill’s equation. We’ve seen that once a 
particle is on an invariant ellipse for a period, it must stay on that 
ellipse throughout its motion. Because the phase space area of the 
single period invariant ellipse is preserved by the motion, the 
quantity that gives the phase space area of the invariant ellipse in 

( )( ) βββ /'''2 2222

q y g p p p
terms of the single particle orbit must also be an invariant. This 
phase space area/π,

( )( ) βαββαγε /'''2 2222 xxxxxxx ++=++=

is called the Courant-Snyder invariant. It may be verified to be 
a constant by showing its derivative with respect to s is zero by 
Hill’s equation, or by explicit substitution of the transfer matrix 
solution which begins at some initial value s = 0.
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Pseudoharmonic Solution

( )
( )

( )( ) ( )
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⎜
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( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( ) εβαββαβ ≡++=++ 0
2

0000
2
0

22 /'/' xxxssxssxssx

Using the x(s) equation above and the definition of ε theUsing the x(s) equation above and the definition of ε, the 
solution may be written in the standard “pseudoharmonic” form

( ) ( ) ( ) ⎞
⎜
⎛ +

∆ − 00001 'th xx αβδδβ( ) ( ) ( )
⎠

⎜⎜
⎝

=−∆=
0

00001
0, tan    wherecos

x
ssx s

βδδµεβ

The the origin of the terminology “phase advance” is now obvious.
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Case II: K(s) not periodic
In a linac or a recirculating linac there is no closed orbit or natural 
machine periodicity. Designing the transverse optics consists of 
arranging a focusing lattice that assures the beam particles comingarranging a focusing lattice that assures the beam particles coming 
into the front end of the accelerator are accelerated (and sometimes 
decelerated!) with as small beam loss as is possible. Therefore, it is 
i ti t k th i iti l b h i j t d i t thimperative to know the initial beam phase space injected into the 
accelerator, in addition to the transfer matrices of all the elements 
making up the focusing lattice of the machine. An initial ellipse, or 
a set of initial conditions that somehow bound the phase space of 
the injected beam, are tracked through the acceleration system 
element by element to determine the transmission of the beamelement by element to determine the transmission of the beam 
through the accelerator. The designs are usually made up of well-
understood “modules” that yield known and understood transverse 
beam optical properties
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Definition of β function
Now the pseudoharmonic solution applies even when K(s) is 
not periodic. Suppose there is an ellipse, the design injected 
ellipse, which tightly includes the phase space of the beam atellipse, which tightly includes the phase space of the beam at 
injection to the accelerator. Let the ellipse parameters for this 
ellipse be α0, β0, and γ0. A function β(s) is simply defined by the 
lli t f ti l

( ) ( )( ) ( ) ( ) ( )( )
[ ]

0
2

11011120
2

12 2 βαγβ sMsMsMsMs +−=

ellipse transformation rule

( )( ) ( ) ( )( )[ ] 0
2

120110
2

12 /        βαβ sMsMsM −+=
where

( ) ( )
( ) ( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
≡

sMsM
sMsM

M s
2221

1211
0,
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One might think to evaluate the phase advance by integrating 
the beta-function. Generally, it is far easier to evaluate the phase 
d i th l f ladvance using the general formula,

( )
( ) ( )

12,'tan ssM
µ =∆ ( )( ) ( )( )

12,'11,'
,'tan

ssss
ss MsMs αβ

µ
−

=∆

where β(s) and α(s) are the ellipse functions at the entrance of 
the region described by transport matrix Ms',s. Applied to the 
situation at hand yields

( )( )
( ) ( )sMsM

sM
s

120110

12
0,tan

αβ
µ

−
=∆
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Beam Matching
Fundamentally, in circular accelerators beam matching is 
applied in order to guarantee that the beam envelope of the real 
accelerator beam does not depend on time. This requirement isaccelerator beam does not depend on time. This requirement is 
one part of the definition of having a stable beam. With periodic 
boundary conditions, this means making beam density contours 
i h li ith th i i t lli (i ti l tin phase space align with the invariant ellipses (in particular at 
the injection location!) given by the ellipse functions. Once the 
particles are on the invariant ellipses they stay there (in the 
linear approximation!), and the density is preserved because the 
single particle motion is around the invariant ellipses. In linacs 
and recirculating linacs, usually different purposes are to beand recirculating linacs, usually different purposes are to be 
achieved. If there are regions with periodic focusing lattices 
within the linacs, matching as above ensures that the beam
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envelope does not grow going down the lattice. Sometimes it is 
advantageous to have specific values of the ellipse functions at 
specific longitudinal locations Other times re/matching is done tospecific longitudinal locations. Other times, re/matching is done to 
preserve the beam envelopes of a good beam solution as changes 
in the lattice are made to achieve other purposes, e.g. changing the 
dispersion function or changing the chromaticity of regions where 
there are bends (see the next chapter for definitions). At a 
minimum, there is usually a matching done in the first parts of the , y g p
injector, to take the phase space that is generated by the particle 
source, and change this phase space in a way towards agreement 
with the nominal transverse focusing design of the rest of thewith the nominal transverse focusing design of the rest of the 
accelerator. The ellipse transformation formulas, solved by 
computer, are essential for performing this process.
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Dispersion Calculation
Begin with the inhomogeneous Hill’s equation for the 
dispersion.

( )
2 1d D K D

Write the general solution to the inhomogeneous equation for 
h di i b f

( ) ( )2

1d D K s D
ds sρ

+ =

the dispersion as before.

( ) ( ) ( ) ( )1 2= pD s D s Ax s Bx s+ +

Here Dp can be any particular solution. Suppose that the 
dispersion and it’s derivative are known at the location s1, and 

e ish to determine their al es at and beca se thewe wish to determine their values at s2. x1 and x2, because they 
are solutions to the homogeneous equations, must be 
transported by the transfer matrix solution Ms2,s1 already found.
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To build up the general solution, choose that particular solution 
of the inhomogeneous equation with boundary conditions

( ) ( ) 0D D′( ) ( ),0 1 ,0 1 0p pD s D s′= =

Evaluate A and B by the requirement that the dispersion and it’s 
derivative have the proper value at s1 (x1 and x2 need to be

( ) ( ) ( )1
1 1 2 1 1x s x s D sA

−
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

derivative have the proper value at s1 (x1 and x2 need to be 
linearly independent!)

( ) ( )
( ) ( )

( )
( )1 1 2 1 1x s x s D sB

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( ) ( ) ( ) ( ) ( ) ( )D s D s s M D s M D s′= − + +( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2 1 2 1

2 1 2 1

2 ,0 2 1 , 1 , 111 12

2 ,0 2 1 , 1 , 121 22

p s s s s

p s s s s

D s D s s M D s M D s

D s D s s M D s M D s

= − + +

′ ′ ′= − + +
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3 by 3 Matrices for Dispersion Tracking

( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )
( )

2 1 2 1, , ,0 2 111 122 1
s s s s pM M D s sD s D s

D s M M D s s D s

⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′= −⎜ ⎟ ⎜ ⎟⎜ ⎟( ) ( ) ( ) ( ) ( )

2 1 2 12 , , ,0 2 1 121 22
1 10 0 1

s s s s pD s M M D s s D s=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

P ti l l ti t i h ti f t t KParticular solutions to inhomogeneous equation for constant K
and constant ρ and vanishing dispersion and derivative at s = 0

K < 0 K = 0 K > 0

Dp,0(s) 2

2
s
ρ

( )( )1 1 cos K s
Kρ

−( )( )1 cosh 1K s
K ρ

−

D'p,0(s) s
ρ

( )1 sin K s
K ρ( )1 sinh K s

K ρ
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M56
In addition to the transverse effects of the dispersion, there are important effects of the 
dispersion along the direction of motion. The primary effect is to change the time-of-
arrival of the off-momentum particle compared to the on-momentum particle which 
traverses the design trajectorytraverses the design trajectory.

( )ds pz D s ds
p

ρ
ρ
⎛ ⎞∆

∆ = + −⎜ ⎟
⎝ ⎠

( ) ( ) ( )
= p dsd z D s

p sρ
∆

∆
( )ρ +

ds

( ) pD s
p
∆

pρ ⎝ ⎠

Design Trajectory Dispersed Trajectory

p

( )
( )

( )
( )

2

1

56

s
yx

x ys

D sD s
M ds

s sρ ρ
⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭
∫
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Classical Microtron: Veksler (1945)

Extraction

5l

6=l

4=l

5=l

⊗ Magnetic
Field2=l

3=l

y

1=l

RF Cavity
x 2

1
µ
ν

=
=
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Synchrotron Phase Stability

Edwin McMillan discovered phase stability independently of 
Veksler and used the idea to design first large electron synchrotron.

)(tVc / RFh f
φ tfRF∆= πφ 2

K

t

sφ tfRFs ∆πφ 2

t

f/1 RFf/1

/RFh Lf cβ=
Harmonic number: # of RF 

ill ti i l ti
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Transition Energy
Beam energy where speed increment effect balances path length 
change effect on accelerator revolution frequency. Revolution 
frequency independent of beam energy to linear order We will

Below Transistion Energy: Particles arriving EARLY get less acceleration

frequency independent of beam energy to linear order. We will 
calculate in a few weeks

Below Transistion Energy: Particles arriving EARLY get less acceleration 
and speed increment, and arrive later, with repect to the center of the bunch, 
on the next pass. Applies to heavy particle synchrotrons during first part of 
acceleration when the beam is non-relativistic and accelerations stillacceleration when the beam is non relativistic and accelerations still 
produce velocity changes.

Above Transistion Energy: Particles arriving EARLY get more energy haveAbove Transistion Energy: Particles arriving EARLY get more energy, have 
a longer path, and arrive later on the next pass. Applies for electron 
synchrotrons and heavy particle synchrotrons when approach relativistic 
velocities. As seen before, Microtrons operate here.
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velocities. As seen before, Microtrons operate here.



Phase Stability Condition
“Synchronous” electron has 

sφ=Phase scol leVEE φcos+=

Difference equation for differences after passing through cavity pass  l + 1:
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l
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21
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01 56
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1

Because for an electron passing the cavity

⎠⎝⎠⎝⎠⎝⎠⎝ 10

( )( )sscbeforeafter eVEE φφφ coscos −∆++∆=∆
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Phase Stability Condition
)/1( EE∆+ 21/K ρ=)/1( ll EE∆+ρ

2πρ

1/i iK ρ=
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Phase Stability Condition
Have Phase Stability if 

22T r1 1 1 1 i 1l eVM π ρ φ⎛ ⎞
⎜ ⎟

2T r 1 1 1 1 sin 1
2

l c
s

l

eVM
E

π ρ φ
λ

⎛ ⎞− < < → − < − <⎜ ⎟
⎝ ⎠

2

2

2 sin cos tan tanl c RF c RF
s s s s

l c c

eV f eV f
E f m c f

π ρ π π γφ φ φ φ
λ

∆
= =

i.e.,

l c cf f

0 tan 2sνπ φ< <

USPAS Accelerator Physics  Jan. 2011



Phase Stability Condition
Have Phase Stability if 

2T M⎛ ⎞
2T r 1

2
M⎛ ⎞ <⎜ ⎟

⎝ ⎠

i.e.,

0 tan 2sνπ φ< <
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Synchrotrons

Two basic generalizations needed

• Acceleration of non-relativistic 
particles

Diff i d ibi RF Cavity• Difference equation describing 
per turn dynamics becomes a 
differential equation with solution q
involving a new frequency, the 
synchrotron frequency
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Acceleration of non-relativistic particles
For microtron, racetrack microtron and other polytrons, 
electron speed is at the speed of light. For non-relativistic 
particles the recirculation time also depends on the longitudinalparticles the recirculation time also depends on the longitudinal 
velocity vz = βzc.

/t L cβ=                       /

1           

recirc zt L c

L p Lt p
p c c p

β

β β

=

⎡ ⎤∂ ∆ ∂
∆ = + ∆⎢ ⎥∂ ∂ ⎣ ⎦

56 56
2

1
z z

z

p c c p
M Mt p p p

t L L

β β
β
β

∂ ∂ ⎣ ⎦
∆∆ ∆ ∆ ∆

= − = − 2 recirc zt L p L p pβ γ
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Momentum Compaction ( ) ( )/ / / /L L p p M Lα ∆ ∆

56
2 2

1 1
c c

Mt p
L

η η α∆ ∆
= − → = − = −

Momentum Compaction ( ) ( ) 56/ / / /L L p p M Lα = ∆ ∆ =

2 2 c c
recirct p L

η η
γ γ

2 12 2 cp E t Ep pc E E η∆ ∆ ∆ ∆
∆ = ∆ → = → = −

Transition Energy: Energy at which the change in the once

2 22 2
z recirc z

p pc E E
p E t Eβ β

∆ ∆ → →

Transition Energy: Energy at which the change in the once 
around time becomes independent of momentum (energy)

1 M 56
2

10c
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M
L

η α
γ

= → = =

N Ph F i t thi !
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No Phase Focusing at this energy!



Equation for Synchrotron Oscillations
2 L⎛ ⎞

1 2

1

211 0
sin 1
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Assume momentum slowly changing (adiabatic acceleration) 
Phase advance per turn is

2
2 2

2cos 1 sin sinc c
c s c s

z l z l

L LeV eV
E E

π η π ηµ φ µ φ
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∆ = + → ∆ ≈ −
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S h i h i i iSo change in phase per unit time is

21 icL Vπ ηµ φ∆

0 0

sinc
c s

z

eV
T T pc

ηµ φ
λβ

≈ −

yielding synchrotron oscillations with frequency

ic ch eVη φsin
2

c c
s rev spc

ηω ω φ
π

= −

h th h i b h L / β λ i th i twhere the harmonic number h = L / βz λ, gives the integer 
number of RF oscillations in one turn
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Phase Stable Acceleration
At energies below transition, ηc > 0. To achieve acceleration 
with phase stability need 0sφ <

( )sin
2

c c
s rev s

h eV
pc

ηω ω φ
π

∴ = −
p

At energies above transition, ηc < 0, which corresponds to the 
case we’re used to from electrons To achieve acceleration withcase we re used to from electrons. To achieve acceleration with 
phase stability need 

( )h eVη−

0sφ >

( ) sin
2

c c
s rev s

h eV
pc

η
ω ω φ

π
∴ =
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Large Amplitude Effects
C l li i h iCan no longer linearize the energy error equation.
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Constant of Motion (Longitudinal 
“Hamiltonian”))

( )( )
2

2
0

2 cos cosc
c s s

d d deV
dt dt pT dt

πηφ φ φ φ φ φ
λ

∆ ∆ ∆
= − + ∆ −

0

( )( )
2 21 icd V Cπηφ φ φ φ φ∆⎛ ⎞ + ∆ ∆ +⎜ ⎟ ( )( )

0

sin cos
2

c
c s seV C

dt pT
ηφ φ φ φ φ

λ
⎛ ⎞ = − + ∆ − ∆ +⎜ ⎟
⎝ ⎠

( ) ( ) ( )( )2
0 0

0

21, sin cos
2

c
c s sH T E T E eV

pT
πηφ φ φ φ φ

λ
∆ ∆ = ∆ + + ∆ − ∆

USPAS Accelerator Physics  Jan. 2011



Equations of Motion
If l h l ( di b i ) i i f d T i h i

( )φ ∂∆∂∆ HETdHd

If neglect the slow (adiabatic) variation of p and T0 with time, 
the equations of motion approximately Hamiltonian
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( )
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φ

∆∂
∂

−=
∆
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=
∆ H

dt
ETd

ET
H

dt
d 0

0

               

In particular the Hamiltonian is a constant of the motionIn particular, the Hamiltonian is a constant of the motion

Kinetic Energy Term
21 Tπη

Potential Energy Term
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No Acceleration

/ 2              coss cV eVφ π φ= ± = ∆

2
2

2 sins
d
dt

φ ω φ∆
= ∆

dt

Better known as the real pendulum.Better known as the real pendulum.
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With Acceleration

( )( )
22

2 cos cos
sin

s
s s
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d
dt
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= + ∆ −
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Equation for separatrix yields “fish” diagrams in phase space.

( )( )
2 sin s s

sdt
φ φ φ φ

φ⎜ ⎟
⎝ ⎠

Equation for separatrix yields fish  diagrams in phase space. 
Fixed points at

( ) 0 2φ φ φ φ φ+ ∆ ∆( )cos cos       0, 2s s sφ φ φ φ φ+ ∆ = ∆ = −
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