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Mechanics
In accelerators, the principles of Mechanics are used to 
determine and solve the equations of motion of the particles 
that make up the beam in the accelerator Depending on thethat make up the beam in the accelerator. Depending on the 
energy of the particles involved, one may need to use either 
non-relativistic (Newtonian) mechanics or the relativistic 
mechanics of Einstein and Lorentz. Non-relativistic 
mechanics starts with
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                                       angular momentum conserved



Work/Energy
• Work done by an external force
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• “Conservative” force has Energy Conservation
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Potential Function Examples

• Gravitational potential near surface of earth

mgz

• Gravitational potential surrounding a star/planet
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• Potential for a static electric charge
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Action

• Newton’s 2nd Law can be difficult to apply in non-
Cartesian coordinate systems (e.g., cylindrical or spherical 

di t t )coordinate systems)
• Find a procedure equivalent to Newton’s 2nd Law in 

Cartesian system, but can be used more generallyCartesian system, but can be used more generally
• Start by defining the “Lagrangian”

2vm d L L∂ ∂⎡ ⎤( )v         
2 vcart
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• Action is the integral of the Lagrangian along the motion
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Principle of Extremal (Least) Action
• Actual motion of the particle (equations of motion in 

Lagrangian form)
d L L∂ ∂⎡ ⎤

makes the action integral extremal Work the argument the

0
v

d L L
dt x

∂ ∂⎡ ⎤ − =⎢ ⎥∂ ∂⎣ ⎦
makes the action integral extremal. Work the argument the 
other way. In a general coordinate system, the equations of 
motion must be of the same Euler-Lagrange form.

( ) ( ) ( ) ( )
2 2

v
v v

t tL L L d LS t x t dt x t x t dt
x dt x

δ δ δ δ δ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ = ⋅ + ⋅⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦∫ ∫

( )

1 1

2

v v

         0 0

t t

t

x dt x

d L L d L Lx t dt S
dt dt

δ δ

∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂ ∂ ∂⎡ ⎤= − + ⋅ = ⇔ − =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦∫

TAADI Fall2012

( )
1

v vt dt x dt x⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦∫



Example Cylindrical Coordinates
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Canonical or Conjugate Momentum
• For general Lagrangian, the canonical momentum is

i
Lp ∂

≡
∂

• Cylindrical Coordinates

i
iq∂
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Do not always have momentum units
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Do not always have momentum units
• For cyclic coordinates

0 0 t tidpL∂

canonical momentum is conserved. For cylindrical systems
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Hamiltonian (Energy) Function
• Euler-Lagrange equations are second order ordinary 

differential equations.
I it ti it i i t l h E l• In some situations it is easier to replace each Euler-
Lagrange equation with two first order ODEs, treating 
(canonical) momentum and the coodinates on the same 
footing. Key is finding a function of the coordinates and 
momenta, that corresponds to the total energy (the 
Hamiltonian)Hamiltonian)
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Legendre Transformation

1. Solve for generalized velocities in terms of momenta

( )L∂ ( ),i i i i j
i

Lp q q q p
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∂
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2. Replace the generalized velocities by momenta

( ) ( )( ), , ,i j i j i jL q q L q q q p→

3. Determine the Hamiltonian (energy)  function in terms of 
coordinates and momenta
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Hamilton’s Canonical Equations

• For kinetic energy quadratic in the iq

i iH q p L T V= − = +∑
• Treat coordinates and conjugate momenta on same footing
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Canonical Transformations

• Hamiltonian outlook has coordinates and momenta on 
same footing, and various transformations between them 

ll dare allowed
• There is a large body of theory, called canonical 

transformation theory, dealing with problem of whichtransformation theory, dealing with problem of which 
transformations of  coordinates and momenta leave 
Hamilton’s equations form invariant. Transformations that 
do are called canonical transformationsdo are called canonical transformations

• The fact that choosing what quantities in the theory to be 
coordinates and what quantities in the theory are momentaq y
is arbitrary through canonical transformation, encourages 
one to picture dynamic motion as movement through 
“phase space”
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phase space



Phase Space

• Plot of dynamical system “state” with coordinate along 
abscissa and momentum along the ordinate

xp
Linear

illOscillator

x

2 2
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xp xH m
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ω= +
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Liouville Theorem

• Area in phase space is preserved when the dynamics is 
Hamiltonian

xp

1t t=

2t t=

x

Area = Area
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1D Proof
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3D Poincare Invariants
• In a three dimensional Hamiltonian motion, the 6D phase 

space volume is conserved (also called Liouville’s Thm.)
V dp dp dp dxdydz= ∫

• Additionally, the sum of the projected volumes (Poincare 
invariants) are conserved

6

6D x y z
V

V dp dp dp dxdydz= ∫
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Emittance (phase space area) exchange based on this idea
• More complicated to prove, but are true because, as in 1D

2 2H H∂ ∂
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i l i 6D h
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Electromagnetic Force

• Lorentz Force

( )vF q E B= + ×

• Equations of motion follow from a “velocity-dependent” 
L i ( l ti i ti ) (V if i HW)

( )vF q E B= + ×

Lagrangian (non-relativistic case) (Verify in HW)

( ) ( )
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= − + + +

• Canonical momentum
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    x x y y z z
L L LP mx qA P my qA P mz qA
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∂ ∂ ∂
= = + = = + = = +
∂ ∂ ∂
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Hamiltonian for Particle in EM Field
• Hamiltonian is

i i
i

H P x L= −∑
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• Equations of motion gauge invariant
2m

      /A A tλ φ φ λ′ ′= + ∇ = − ∂ ∂

2
mx x dL q qx A L q

dt

φ φ

λφ⋅′ ′ ′= − + ⋅ = +
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• Verify Hamilton’s equations yield the Lorentz Force



Liouville’s Theorem Again

• From Liouville’s theorem we can conclude right away that, 
neglecting interactions between particles, the phase space 
d it i ti l b t b h d l bdensity in a particle beam cannot be changed merely by 
acting on the beam with an external Electromagnetic field. 
Standard  magnetic field configurations will not change 
particle phase space density. Important point, and a 
fundamental problem in accelerator physics. Beam quality 
usually tends to degrade as one propagates along theusually tends to degrade as one propagates along the 
accelerator.
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