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Energy Units
• When a particle is accelerated, i.e., its energy is changed 

by an electromagnetic field, it must have fallen through an 
Electric Field (we show later by very general argumentsElectric Field (we show later by very general arguments 
that Magnetic Fields cannot change particle energy). For 
electrostatic accelerating fields the energy change is 

( )a bE q q∆ = ∆Φ = Φ −Φ
q charge Φ the electrostatic potentials before and after theq charge, Φ, the electrostatic potentials before and after the 
motion through the electric field. Therefore, particle energy 
can be conveniently expressed in units of the “equivalent” 
l i i l h d d l helectrostatic potential change needed to accelerate the 

particle to the given energy. Definition: 1 eV, or 1 electron 
volt, is the energy acquired by 1 electron falling through a 
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, gy q y g g
one volt potential difference.



Energy Units

19 19

6 13

   1 eV = 1.6 10  C  1 V  = 1.6 10  J− −× × ×
6 131 MeV = 10  eV = 1.6 10  J−×

To convert rest mass to eV use Einstein relation

2
0                                  =E mc

h i th t F l t

( )231 8 15
,0 9.1 10  kg 3 10  m/sec 81.9 10  JelectronE − −= × × = ×

where m is the rest mass. For electrons

( ),

                               = 0.512 MeV
Recent “best fit” value 0 51099906 MeV
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Recent best fit  value 0.51099906 MeV



Methods of Acceleration
• Acceleration by Static Electric Fields (DC) Acceleration

– Cockcroft-Walton
d G f A l t– van de Graaf Accelerators

– Limited by voltage breakdowns to potentials of under a 
million volts in 1930, and presently to potentials of tens of o vo ts 930, a d p ese t y to pote t a s o te s o
millions of volts (in modern van de Graaf accelerators). Not 
enough to do nuclear physics at the time.

R di F (RF) A l i• Radio Frequency (RF) Acceleration
– Main means to accelerate in most present day accelerators 

because one can get to 10-100 MV in a meter these days.because one can get to 10 100 MV in a meter these days. 
Reason: alternating fields don’t cause breakdown (if you are 
careful!) until much higher field levels than DC.
d d i h i d id

TAADI Fall2012

– Ideas started with Ising and Wideröe



Cockcroft-Walton
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Proton Source at Fermilab, Beam Energy 750 keV



van de Graaf Accelerator

Brookhaven
Tandem
van de Graafvan de Graaf
~ 15 MV

G t
Tandem trick multiplies 

TAADI Fall2012

Generator
p

the output energy



Ising’s Linac Idea

Prinzip einer Methode zur Herstellung von Kanalstrahlen hoher Voltzahl’ (in 
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p g (
German), Arkiv för matematik o. fysik, 18, Nr. 30, 1-4 (1924).



Drift Tube Linac Proposal
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Idea Shown in Wideröe Thesis



Wideröe Thesis Experiment

Über ein neues Prinzip zur Herstellung hoher Spannungen Archiv für Elektrotechnik 21 387 (1928)

TAADI Fall2012

Über ein neues Prinzip zur Herstellung hoher Spannungen, Archiv für Elektrotechnik 21, 387 (1928) 

(On a new principle for the production of higher voltages)



Sloan-Lawrence Heavy Ion Linac

The Production of Heavy High Speed Ions without the Use of High Voltages
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y g p g g
David H. Sloan and Ernest O. Lawrence Phys. Rev. 38, 2021 (1931)



Alvarez Drift Tube Linac

• The first large proton drift tube linac built by Luis Alvarez 
and Panofsky after WW II
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Earnest Orlando Lawrence
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Germ of Idea*

*Stated in
E O Lawrence
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E. O. Lawrence 
Nobel Lecture



Lawrence’s Question
• Can you re-use “the same” accelerating gap many times?

vF ma q B= = × B
22

2
2 2

v
vv   v 0x

y c x

F ma q B
dd x qB

dt m dt

×

= → +Ω =

B

22
2

2 2

v
v v 0

y

y
x c y

dt m dt
dd y qB

= − → +Ω =

( ) ( )

2 2

2 2v v v v v v 0

x c y

x y x y y x

dt m dt
d qB

+ = − =
gap

is a constant of the motion

( ) ( )x y x y y xdt m

( ) ( )2 2
0v v vx yt t= +
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( ) ( )0 x y



Cyclotron Frequency

( ) ( ) ( ) ( )0 0      v v cos ; v v sinx c y ct t t tδ δ= Ω + = − Ω +

( ) ( ) ( ) ( )0 0
0 0

v vsin ; cosc c
c c

x t x t y t y tδ δ= + Ω + = + Ω +
Ω Ω

The radius of the oscillation r = v0/Ωc is proportional to the velocity 
after the gap. Therefore, the particle takes the same amount of time to 
come around to the gap independent of the actual particle energy!!!!come around to the gap, independent of the actual particle energy!!!!  
(only in the non-relativistic approximation). Establish a resonance 
(equality!) between RF frequency and particle transverse oscillation 
f l k th C l t Ffrequency, also known as the Cyclotron Frequency

/2rf c c
qBf f π= = Ω =
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2rf c cf f
mπ



What Correspond to Drift Tubes?

• Dee’s!
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U. S. Patent Diagram
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Magnet for 27 Inch Cyclotron (LHS)
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Lawrence and “His Boys”
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And Then!
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Beam Extracted from a Cyclotron
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Radiation Laboratory 60 Inch Cyclotron, circa 1939



88 Inch Cyclotron at Berkeley Lab
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Relativistic Corrections

When include relativistic effects (you’ll see in the HW!) the 
“effective” mass to compute the oscillation frequency is the 

/2 qBf Ω

p q y
relativistic mass γm

/2
2c c

q
m

Bf π
πγ

= Ω =

where γ is Einstein’s relativistic γ most usefully expressed aswhere γ is Einstein s relativistic γ, most usefully expressed as

2
0tot kin kinE E E mc Eγ + +

= = = 2
0 0E E mc

γ = = =

m particle rest mass E particle kinetic energy
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m particle rest mass, Ekin particle kinetic energy



Cyclotrons for Radiation Therapy
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Bragg Peak
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Betatrons

25 MeV electron accelerator with its inventor: Don Kerst. The 
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earliest electron accelerators for medical uses were betatrons.



300 MeV ~ 1949
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Transformer
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Generic Modern Synchrotron

Focusing

RF Acceleration Bending

Spokes are user stations for this X-ray ring source
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Spokes are user stations for this X ray ring source



Synchrotron Phase Stability

Edwin McMillan discovered phase stability independently of 
Veksler and used the idea to design first large electron synchrotron.

)(tVc / RFh f
φ tfRF∆= πφ 2

…
t

sφ tfRFs ∆πφ 2

t

f/1 RFf/1

/RFh Lf cβ=
Harmonic number: # of RF 

ill ti i l ti
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RFf β oscillations in a revolution



Transition Energy
Beam energy where speed increment effect balances path length 
change effect on accelerator revolution frequency. Revolution 
frequency independent of beam energy to linear order We will

Below Transistion Energy: Particles arriving EARLY get less acceleration

frequency independent of beam energy to linear order. We will 
calculate in a few weeks

Below Transistion Energy: Particles arriving EARLY get less acceleration 
and speed increment, and arrive later, with repect to the center of the bunch, 
on the next pass. Applies to heavy particle synchrotrons during first part of 
acceleration when the beam is non-relativistic and accelerations stillacceleration when the beam is non relativistic and accelerations still 
produce velocity changes.

Above Transistion Energy: Particles arriving EARLY get more energy haveAbove Transistion Energy: Particles arriving EARLY get more energy, have 
a longer path, and arrive later on the next pass. Applies for electron 
synchrotrons and heavy particle synchrotrons when approach relativistic 
velocities. As seen before, Microtrons operate here.
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velocities. As seen before, Microtrons operate here.



Ed McMillan

Vacuum chamber for 
electron synchrotron 
being packed for shipment 
to Smithsonian
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Full Electron Synchrotron
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GE Electron Synchrotron

Elder, F. R.; Gurewitsch, A. M.; Langmuir, R. V.; Pollock, H. C., "Radiation from 
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, ; , ; g , ; , ,
Electrons in a Synchrotron" (1947) Physical Review, vol. 71, Issue 11, pp. 829-830



Cosmotron (First GeV Accelerator)
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BNL Cosmotron and Shielding
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Cosmotron Magnet
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Cosmotron People
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Bevatron
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Designed to discover the antiproton; Largest Weak Focusing Synchrotron



Strong Focusing

• Betatron oscillation work has showed us that, apart from 
bend plane focusing, a shaped field that focuses in one 
t di ti d f i th thtransverse direction, defocuses in the other

• Question: is it possible to develop a system that focuses in 
both directions simultaneously?both directions simultaneously?

• Strong focusing: alternate the signs of focusing and 
defocusing: get net focusing!!

Order doesn’t 
matter
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Linear Magnetic Lenses: Quadrupoles
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Source: Danfysik Web site



Weak vs. Strong Benders
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First Strong-Focusing Synchrotron

Cornell 1 GeV Electron Synchrotron (LEPP AP Home Page)
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Cornell 1 GeV Electron Synchrotron (LEPP-AP Home Page)



Alternating Gradient Synchrotron (AGS)
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CERN PS
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25 GeV Proton Synchrotron



CERN SPS

TAADI Fall2012

Eventually 400 GeV protons and antiprotons



FNAL
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First TeV-scale accelerator; Large Superconducting Benders



LEP Tunnel (Now LHC!)

Empty LHC
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Storage Rings

• Some modern accelerators are designed not to “accelerate” 
much at all, but to “store” beams for long periods of time 
th t b f ll d b i t lthat can be usefully used by experimental users.
– Colliders for High Energy Physics. Accelerated beam-

accelerated beam collisions are much more energeticaccelerated beam collisions are much more energetic 
than accelerated beam-target collisions. To get to the 
highest beam energy for a given acceleration system 
design a colliderdesign a collider

– Electron storage rings for X-ray production: circulating 
electrons emit synchrotron radiation for a wide variety y y
of experimental purposes.
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Princeton-Stanford Collider
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SPEAR
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Eventually became leading synchrotron radiation machine



Cornell 10 GeV ES and CESR
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SLAC’s PEP II B-factory
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ALADDIN at Univ. of Wisconsin
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VUV Ring at NSLS
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VUV ring “uncovered”



Berkeley’s ALS
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Argonne APS
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ESRF
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