
TAAD1TAAD1
Electromagnetic

TheoryTheory
G. A. Krafft

Jefferson Lab
Jefferson Lab Professor of Physics

Old Dominion University

TAADI Electromagnetic Theory
08-31-12



Classical Electrodynamics
• A main physics discovery of the last half of the 20th

century is that electrodynamics is a part of an overarching 
quantum theory of nature called the standard modelquantum theory of nature called the standard model

• In the standard model, electromagnetism is closely linked 
with the weak interaction force, through the so-called 
electroweak unification, in a non-Abelian gauge theory 
that relies on and utilizes the usual phase invariance of 
quantum mechanicsq

• As part of the standard model, electromagnetic forces are 
distinguished in that they couple to electric charge, and 
th l ( ?) b t th b t f tthey are long (∞ ?) range because to the best of present 
knowledge, the photon (EM force carrier) is (nearly?) 
massless 
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• This fact “explains” their prevalence in our day-to-day life



Range of Validity of Classical Description

• Large numbers of quanta (quantum mechanical 
fluctuations are relatively small, leading to classical 

lt )results)

1photonsN >>

• Low photon energy
2

h t h t l tE m cω= <<
Higher energies can lead to (quantum mechanical) effects 
like Compton Effect. Not sufficient (photoelectric effect!)

photons photons electronE m cω <<

• Macroscopic charge, i. e., large numbers of individual 
electrons. Electron discreteness not important.

• Does not work for atoms and new nano-scale devices
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• Does not work for atoms and new nano-scale devices. 
Need Quantum Mechanics for them!



Line and Surface Integrals

• Line integral

( )( ) ( )b dL τ
∫ ∫ ( )( ) ( )
L a

dL
V dl V L d

d
τ

τ τ
τ

⋅ ≡ ⋅∫ ∫

for any parameterization of L (invariant to choice!)
• Surface (Flux) integral

( )( ) ( )( )S S⎡ ⎤∂ ∂
∫ ∫∫ ( )( ) ( )( )

( ) ( )

, ,
S S

S SV ndA V S S d d

S SS

σ τ σ τ σ τ
σ τ

σ δσ τ σ τ
′

⎡ ⎤∂ ∂
⋅ ≡ ⋅ ×⎢ ⎥∂ ∂⎣ ⎦

+∂

∫ ∫∫

again independent of parameters up to sign (Jacobian!). 
( ) ( ) ( )

0

, ,
            , lim

S SS
δσ

σ δσ τ σ τ
σ τ

σ δσ→

+ −∂
≡

∂
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Can usually integrate easily in high-symmetry situations.



Line and Surface Integrals

• Line integral parametrization invariant

( )( )( ) ( )( ) ( )( )( ) ( )( )b bdL s dL s dV dl V L s ds V L s ds
τ τ ττ τ⋅ ≡ ⋅ = ⋅∫ ∫ ∫( )( )( ) ( )( )( )

( )( ) ( )
( )

( )

       by change of variables formula

L a a

b

a

V dl V L s ds V L s ds
ds d ds

dL
V L d

d

τ

τ

τ τ
τ

τ
τ τ

τ
= ⋅

∫ ∫ ∫

∫

• Surface (Flux) integral parametrization invariant

( )aτ

( ) ( )( )( ) ( ) ( )( )( )S S⎡ ⎤∂ ∂
∫ ∫∫ ( ) ( )( )( ) ( ) ( )( )( ), , , , , ,

/ /
/ /

S P

S SV ndA V S S d d

S S S S S S S S

σ σ τ τ σ τ σ σ τ τ σ τ σ τ
σ τ

σ σ τ σσ τ σ τ
σ τ τ τσ τ σ σ τ σ σ τ τ τ σ τ

′

⎡ ⎤∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′ ′⋅ ≡ ⋅ ×⎢ ⎥′ ′∂ ∂⎣ ⎦
′ ′∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

× = + × + = ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ′ ′′ ′ ′ ′ ′ ′ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫ ∫∫

• When evaluating flux integrals, normal must be chosen. 

V ndA V∴ ⋅ ≡ ( )( ) ( )( ), ,    by 2-D change of variables
S P

S SS S d dσ τ σ τ σ τ
σ τ

⎡ ⎤∂ ∂
⋅ ×⎢ ⎥∂ ∂⎣ ⎦

∫ ∫∫
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You choose correct vector order in product to get normal.



Flux for a Radial Field

( ) ( ) ˆ            , ,V x y z f r r=( ) ( )
2 2 2 ˆ ˆ ˆˆ    xx yy zzr x y z r

r
+ +

= + + =

V
S S S

V ndA V ndA V ndA
+ −

Φ = ⋅ = ⋅ + ⋅∫ ∫ ∫

( ) ( )
2 2 2

2

2 2 2
2

S x y a

aV ndA f a dxdy f a a
a x y

π
+ + ≤

⋅ = =
− −

∫ ∫

∫ ( ) ( )2 22        4V
S

V ndA f a a f a aπ π
−

⋅ = ∴ Φ =∫

TAADI Electromagnetic Theory



Vector Calculus Theorems

• Stokes Theorem

∫ ∫
S L S

A ndA A dl
=∂

∇ × ⋅ = ⋅∫ ∫

• Divergence Theorem

V S V

AdV A ndA
=∂

∇ ⋅ = ⋅∫ ∫
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Electromagnetic Quantities
Charge [C], Charge Density [C/m3]

( )            ,q x tρ

( ),E x t

Electric Field Vector [V/m]

Electric Displacement Vector [C/m2]

( ),D x t( ),

Magnetic Field Vector [A/m]

( )H x t( ),H x t
Magnetic Induction Vector [V sec/m2]

( )
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( ),B x t



Maxwell’s Equations

Electric charge generates electric displacement D ρ∇ ⋅ =

BE
t

∂
∇ × = −

∂
Faraday’s Law 

Magnetic field generated by real or 

0B

DH J

∇ ⋅ =

∂
∇ × = +

No magnetic charges 

displacement current density
H J

t
∇ × = +

∂

Maxwell’s Equations are linear in the source terms ρ and  J. 
In general will generate linear (partial) differential 
equations to solve Superposition valid!
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equations to solve. Superposition valid!



Constitutive Relations

• Relationships between electric quantities
D Eε=

• Relationships between magnetic quantities

B Hµ=
• For most of course assume purely linear relationship 

exists.  As you go on, you’ll find there are non-linear 
dependences and other complicationsp p

• Better approximation for static phenomena
• In vacuum

0 0

2 2
12 7

                                              

C Nt sec8 85 10 4 10

D E B Hε µ

ε µ π− −

= =

= × = ×
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0 02 28.85 10              4 10
Nt m C

ε µ π= × = ×



Lorentz Force

• Force on a (quantized) charge q

( )F E B( )vF q E B= + ×

• From dimensions, see that force is coupled to magnetic 
induction, not magnetic field

• As will see later, valid at relativistic energies too when 
interpret force as change of relativistic momentum with 
time

( ) ( )v
v

d m
q E B

dt
γ

= + ×
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dt



Maxwell Equations (Integral Form)

• Applying Divergence and Stokes Theorems

D D dA dV∇ ∫ ∫                    
S V

D D n dA dV

B B

ρ ρ∇ ⋅ = ⇒ ⋅ =

∂ ∂

∫ ∫

∫ ∫            

0 0
L S

B BE E dl n dA
t t

B B n dA

∂ ∂
∇ × = − ⇒ ⋅ = − ⋅

∂ ∂

∇ = ⇒ =

∫ ∫

∫0                    0
S

B B n dA

D DH J H dl dA J dA

∇ ⋅ = ⇒ ⋅ =

∂ ∂
∇ × + ⇒

∫

∫ ∫ ∫        
L S S

H J H dl n dA J n dA
t t

∇ × = + ⇒ ⋅ − ⋅ = ⋅
∂ ∂∫ ∫ ∫
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Boundary Conditions

• Gaussian Pillbox Argument, σ is surface charge

( ) ( )ˆ ˆD n dA D D n A A D D nσ σ≈ ∆ ∆ →∫ ( ) ( )

( )

 

ˆ ˆ ˆ 0

II I S II I S
G

II I S II S I S

D n dA D D n A A D D n

B n dA B B n A B n B n

σ σ⋅ ≈ − ⋅ ∆ = ∆ → − ⋅ =

⋅ = − ⋅ ∆ = → ⋅ − ⋅

∫

∫
• Discontinuity of  normal component of D given by surface 

charge and no change in the normal component of B

( ) 0II I S II S I S
G

n d n n n→∫

charge and no change in the normal component of B

,II IID B
A∆

,I ID B

G

ˆ
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Sn



• Gaussian Loop Argument, K is surface current [A/m]

0II I
BE dl n dA E dl E dl∂

⋅ = − ⋅ → ⋅ − ⋅ =∫ ∫  0

ˆ0

II I
L S

II I S

E dl n dA E dl E dl
t

DH dl n dA J n dA H l H l K n l

→
∂

∂
⋅ − ⋅ = ⋅ → ⋅∆ − ⋅∆ − = ⋅ × ∆

∫ ∫

∫ ∫ ∫
• Discontinuity of  tangential component of H given by surface 

current and no change in the tangential component of E

  0II I S
L S S

H dl n dA J n dA H l H l K n l
t

→ ∆ ∆ ×∆
∂∫ ∫ ∫

current and no change in the tangential component of E

,II IIE H
l∆

L

E H
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,I IE H



• Maxwell Equations plus the boundary conditions provide a 
complete description of all classical electromagnetic 
hphenomena

• Given source functions and constitutive relations these 
equations have unique solutionsequations have unique solutions

• A wide variety of numerical solutions exist; we want you 
to be able to understand the solutions that you derive from 

d i f ki lif !codes in your future working life!
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Electrostatics

• Maxwell Equations simplify enormously if the fields and 
sources do not depend on time

• Electric field of a static charge  q1 at location       given by 
Coulomb’s Law

1x
Coulomb s Law

( ) 1 1
34

q x xE x
x xπε
−

=
0 1

4 x xπε −
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Coulomb Interaction 

• Notation
2 2 2            v v v vx y z≡ + + →

( ) ( ) ( )( )3/ 23 2 2 2
1 1 1 1x x x x y y z z− = − + − + −

• Force on test particle with charge q at location

( ) ( )
( )

1 1
3/ 24

qq x xF x qE x −
= =

x

• Dependence on the distance between charges

( ) ( )
( ) ( ) ( )( )3/ 22 2 2

0
1 1 1

4
q

x x y y z zπε − + − + −

Dependence on the distance between charges

( ) ( ) ( )
1

2 2 2 2

1 1
4
qqF = ∝
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( ) ( ) ( )2 2 2 2
0 1 1 1

4 rx x y y z zπε − + − + −



Gauss’s Law

• Easy proof:
( )231 x xx x ′−′−

∇ ⋅ = −

( ) ( )

3 3 5

2 2

           

3 31 1

x x x x x x

y y z z

∇ ⋅ =
′ ′ ′− − −

′ ′− −

• Evaluate on a sphere

( ) ( )
3 5 3 5

3 31 1 0   
y y z z

x x
x x x x x x x x

′+ − + − = ≠
′ ′ ′ ′− − − −

( ) 3/x x x x ndA′ ′∫• Evaluate                                                  on a sphere 
surrounding

21x x ′−
∫ ∫

x ′
( ) /x x x x ndA− − ⋅∫

2
3 2

1 cos 4
S

x x ndA R d d
Rx x

θ φ π⋅ = =
′−∫ ∫
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• Independent of R! Gauss’s Law follows from this!



Formal Statement

• Gauss’s Law: for an arbitrary surface S (doesn’t need to be
a sphere!)

0

inside

S

qE ndA
ε

⋅ =∫
• Pf: If a charge is outside, calculation 1 shows it doesn’t 

contribute to the integral. If a charge is inside, calculation 
2 shows it contributes to the integral as given.g g

• For any V and S = ∂V

( )1insideqEdxdydz E ndA x dxdydzρ∇ ⋅ = ⋅ = =∫ ∫ ∫ ( )
0 0

               1st M axwell E    qn. in va um cu

V S V

y y

E

ρ
ε ε

ρ
∴∇ ⋅ =

∫ ∫ ∫
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0

q
ε



Magnetostatics: Ampere’s Law
In conventional vector notation  is

H dl I⋅ =∫
where I is the total current enclosed by the current loop. 
Define current density vector, and current density

L
∫

y , y

For time independent charge density

( ), ,x y zJ J J J=

0.J
t
ρ∂

∇ ⋅ = − =
∂

For time-independent charge density

t∂

H dl H ndA J ndA I⋅ = ∇ × ⋅ = ⋅ =∫ ∫ ∫
Integrating over a surface bounded by L
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L S S S=∂
∫ ∫ ∫



Electromagnetic Potentials

Poincare’s lemma plus Div B = 0 implies there is a vector A
so that

B A= ∇ ×

This defines the usual vector potential.  Poincare’s lemma plus 
the Faraday’s Law imply there is a scalar potential (sign chosen 
using traditional definition with E as the negative gradient)using traditional definition with E as the negative gradient)

0A AE E φ
⎡ ⎤∂ ∂

∇ ∇⎢ ⎥ 0E E
t t

φ∇ × − = → − = −∇⎢ ⎥∂ ∂⎣ ⎦
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Gauge Invariance

Considerable flexibility/latitude in choosing potentials. If 
redefine them by

new oldA A d

φ φ

= + Λ

∂Λ
= −new old t

φ φ= −
∂

for an arbitrary space-time function, then the electric field and 
magnetic field will be identical when computed with the new 
potentials. In other words, the transformation from the old to 
new descriptions will leave the electromagnetic field invariant. p g
One makes various choices on the gauge, for convenience of 
calculation. 
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Equations for the Potentials

yx z
DD DD

x y z
ρ ρ

∂∂ ∂
∇ ⋅ = → + + =

∂ ∂ ∂

( )
2 2 2

0 2 2 2
0

D E A
x y z t

ρε φ
ε

⎡ ⎤∂ ∂ ∂ ∂
= → + + + ∇ ⋅ = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

D BH J H∂
∇ × − = = →

and, by sorting the individual components

0

2 23

                  ,

m

H J H
t

A A J

µ

ε ε ε µ φ µ

∇ × = = →
∂

⎡ ⎤∂∂ ∂ ∂
+ + =⎢ ⎥∑

( )

0 0 02
, , 1

2 2 2 2

   

1 1

ijk klm i ij l i
j l m

A J
x x t x t

A A J

ε ε ε µ φ µ

φ µ

=

+ + =⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂ ∂

+ + − − ∇ ∇ ⋅ − ∇ = −⎢ ⎥

∑
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( ) 02 2 2 2 2 2 A A J
x y z c t c t

φ µ+ + − − ∇ ∇ ⋅ − ∇ = −⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦



Lorenz Gauge

Lorenz Gauge condition is

2

1 0A
c t

φ∂
∇ ⋅ + =

∂

Applying this condition yields the following, very symmetrical 
version of the potential equations

2 2 2 2

2 2 2 2 2
0

1
x y z c t

ρφ
ε

⎡ ⎤∂ ∂ ∂ ∂
+ + − = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

2 2 2 2

02 2 2 2 2

1 A J
x y z c t

µ
⎡ ⎤∂ ∂ ∂ ∂

+ + − = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
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Energy/Power considerations
Units of electric field , electric displacement, and current density 

Nt C CE J D⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦2 2

3 3

       
sec m m

        

E J D
C

J JE J E D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⋅

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦3 3sec m m⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⋅

Power delivered from electromagnetic field to a current element per 
it l i l E d J P d li d t t iunit volume involves E and J. Power delivered to a current in a 

small volume dV must be

( )
Use Maxwell Equations to derive general result

( )E J dV= ⋅
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Use Maxwell Equations to derive general result 



Energy Conservation

Energy/volume involves multiplication of E and D. The exact 
formula comes from the Maxwell Equations:

3 3/
V V

E Jd x E H D t d x⎡ ⎤⋅ = ⋅ ∇ × − ∂ ∂⎣ ⎦∫ ∫
3                           /

V

H E B t d x

E D H B

⎡ ⎤− ⋅ ∇ × − ∂ ∂⎣ ⎦

⎡ ⎤+⎣ ⎦

∫

3 3

2V V

E D H B
E H d x d x

t

⎡ ⎤⋅ + ⋅∂ ⎣ ⎦⎡ ⎤= − ∇ ⋅ × −⎣ ⎦ ∂∫ ∫

The RHS terms define the [1] Poynting (Energy Flux) Vector (J/sec 
m2)

S E H×
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S E H= ×



Field Energy Evolution Equation

For linear materials have [2] energy density (J/m3) 

2 2 2 2
E D H B E E H Hu ε µ⎛ ⎞ ⎛ ⎞⋅ ⋅ ⋅ ⋅

= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Field Energy Evolution

⎝ ⎠ ⎝ ⎠

u S J E∂
+ ∇ ⋅ = ⋅S J E

t
+ ∇ ⋅ = − ⋅

∂
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Momentum Conservation

Momentum is a vector quantity. Mechanical momentum delivered 
to a load by an electromagnetic field is

mechdp E J B dxdydxρ⎡ ⎤= + ×⎣ ⎦∫

Define the vector force density to be

V

E J B dxdydx
dt

ρ⎡ ⎤= + ×⎣ ⎦∫

Define the vector force density to be

E J Bρ⎡ ⎤+ ×⎣ ⎦
Momentum Flux density must have nine components

[ ]1 2 3ˆ ˆk l
i ij jkl i i i ie T dx dx e T dy dz T dz dx T dx dyε ⊗ = ∧ + ∧ + ∧
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[ ]1 2 3i ij jkl i i i ie T dx dx e T dy dz T dz dx T dx dyε ⊗ ∧ + ∧ + ∧



In free space

1 E∂

then

0 0
0

1      EE J B
t

ρ ε ε
µ

∂
= ∇ ⋅ = ∇ × −

∂
then

( ) ( )
( ) ( )

( )
2

0 02

     E E c B B
E J B E Bρ ε ε

⎡ ⎤∇ ⋅ + ∇ ⋅ ∂⎢ ⎥+ × = − ×
⎢ ⎥ ∂( ) ( )

( )0 02 tE E c B B
ρ

⎢ ⎥ ∂− × ∇ × − × ∇ ×⎣ ⎦
Momentum change equation

( ) ( ) ( ) ( )2 2

fieldmech dpdp
dt dt

E E c B B E E c B B dxdydzε

+ =

⎡ ⎤∇ + ∇ × ∇ × × ∇ ×⎣ ⎦∫
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( ) ( ) ( ) ( )0
V

E E c B B E E c B B dxdydzε ⎡ ⎤∇ ⋅ + ∇ ⋅ − × ∇ × − × ∇ ×⎣ ⎦∫



Maxwell Stress Tensor

Momentum in field

2

1
field

V

p E Hdxdydz
c

= ×∫

Stress Tensor

( )1⎡ ⎤( )2 2
0

2 2 2

1             
2

1 0 0

ij i j i j ij

x x x x x y x y x z x z

T E E c B B E E c B B

E E c B B E E c B B E E c B B
E E

ε δ

ε

⎡ ⎤= + − ⋅ + ⋅ =⎢ ⎥⎣ ⎦
⎛ ⎞+ + +

⎛ ⎞⋅ +⎜ ⎟
⎛ ⎞
⎜ ⎟2 2 2 0

0 2
2 2 2

0 1 0
2

0 0
y x y x y y y y y z y z

z x z x z y z y z z z z

E E
E E c B B E E c B B E E c B B

c B BE E c B B E E c B B E E c B B

εε
⎛ ⎞⋅ +⎜ ⎟

+ + + − ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎝ ⎠⎜ ⎟+ + +⎝ ⎠ 1

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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