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RF Cavity 

• Mode transformer (TEM→TM) 

 

• Impedance transformer (Low Z→High Z) 

 

• Space enclosed by conducting walls that can sustain an 

infinite number of resonant electromagnetic modes 

 

• Shape is selected so that a particular mode can 

efficiently transfer its energy to a charged particle 

 

• An isolated mode can be modeled by an LRC circuit 
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RF Cavity 

Lorentz force 

 

An accelerating cavity needs to provide an electric field E 

longitudinal with the velocity of the particle 

Magnetic fields provide deflection but no acceleration 

 

DC electric fields can provide energies of only a few MeV 

Higher energies can be obtained only by transfer of energy from 

traveling waves →resonant circuits 

Transfer of energy from a wave to a particle is efficient only is 

both propagate at the same velocity 

( )F q E v B= + ´
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Equivalent Circuit for an rf Cavity 
 

Simple LC circuit representing an 
accelerating resonator 

 

 

 

 

Metamorphosis of the LC circuit 
into an accelerating cavity 

 

 

 

 

Chain of weakly coupled pillbox  

cavities representing an 
accelerating module 

      

Chain of coupled pendula as its 
mechanical analogue  
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Electromagnetic Modes 

Electromagnetic modes satisfy Maxwell equations 

 

 

With the boundary conditions (assuming the walls are 

made of a material of low surface resistance) 

 no tangential electric field 

 no normal magnetic field 
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Electromagnetic Modes 

Assume everything  

 

 

 

For a given cavity geometry, Maxwell equations have an infinite 

number of solutions with a sinusoidal time dependence 

For efficient acceleration, choose a cavity geometry and a mode 

where: 

Electric field is along particle trajectory 

Magnetic field is 0 along particle trajectory 

Velocity of the electromagnetic field is matched to particle velocity 
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Accelerating Field (gradient) 

Voltage gained by a particle divided by a reference length 

 

 

For velocity-of-light particles 

 

For less-than-velocity-of-light cavities, there is no 

universally adopted definition of the reference length 
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Design Considerations  
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Energy Content 

Energy density in electromagnetic field: 

 

 

Because of the sinusoidal time dependence and the 90º 

phase shift, he energy oscillates back and forth between 

the electric and magnetic field 

Total energy content in the cavity: 
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Power Dissipation 

Power dissipation per unit area 

 

 

 

Total power dissipation in the cavity walls 
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Quality Factor 

Quality Factor Q0:  
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Geometrical Factor 

Geometrical Factor QRs (Ω) 

 Product of the Quality Factor and the surface resistance 

 Independent of size and material 

 Depends only on shape of cavity and electromagnetic mode 

2 2 2

0
0 2 2 2

0

1 2
2

377 Impedance of vacuum

V V V
s

A A A

dV dV dV
G QR

da da da

m ph
wm p

e l l

h

= = = =

» W

ò ò ò

ò ò ò

H H H

H H H



Page 13 

Shunt Impedance, R/Q 

Shunt impedance Rsh:  

         

 Vc = accelerating voltage 

 

 Note: Sometimes the shunt impedance is defined as       

 or quoted as impedance per unit length (ohm/m) 

 

 

R/Q (in Ω) 
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Q – Geometrical Factor (Q Rs)  
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Shunt Impedance (Rsh), Rsh Rs, R/Q  
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Power Dissipated per Unit Length or Unit Area  
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External Coupling 

• Consider a cavity connected 
to an rf source 

 

• A coaxial cable carries power 
from an rf source to the cavity 

 

• The strength of the input 
coupler is adjusted by 
changing the penetration of 
the center conductor 

 

• There is a fixed output 
coupler, the transmitted 
power probe, which picks up 
power transmitted through 
the cavity.  This is usually 
very weakly coupled 

 

 



Page 18 

Cavity with External Coupling 

Consider the rf cavity after the rf is turned off. 
Stored energy U satisfies the equation: 
 
Total power being lost, Ptot, is:  
 
Pe is the power leaking back out the input coupler.   
Pt is the power coming out the transmitted power coupler.  
 Typically Pt is very small  Ptot  Pdiss + Pe  
 
Recall  
 
Similarly define a “loaded” quality factor QL:  
 
Now 
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Cavity with External Coupling 

 

 

 

 

Equation  

 

 

suggests that we can assign a quality factor to each loss mechanism, 
such that  

 

 

 

where, by definition,  

 

Typical values for CEBAF 7-cell cavities: Q0=1x1010, Qe QL=2x107. 
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Cavity with External Coupling 

• Define “coupling parameter”: 

 

 

 

     therefore 

                           

 

 

  is equal to: 

 

 

• It tells us how strongly the couplers interact with the cavity. 

Large  implies that the power leaking out of the coupler is 

large compared to the power dissipated in the cavity walls.   

0

e

Q

Q
b º     

0

1 (1 )

LQ Q

b+
=

e

diss

P

P
b =



Page 21 

Several Loss Mechanisms  
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Equivalent Circuit for an rf Cavity 
 

Simple LC circuit representing  

an accelerating resonator 

 

Metamorphosis of the LC circuit  

into an accelerating cavity 

 

 

       Chain of weakly coupled pillbox  

      cavities representing an accelerating  

      cavity 

 

      Chain of coupled pendula as  

      its mechanical analogue  
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Parallel Circuit Model of an Electromagnetic Mode 

• Power dissipated in resistor R:    

 

• Shunt impedance:   

      

• Quality factor of resonator:  
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1-Port System  
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1-Port System 
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1-Port System 
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1-Port System 
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Equivalent Circuit for a Cavity with Beam 

• Beam in the rf cavity is represented by a current generator.  

• Equivalent circuit:  
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Equivalent Circuit for a Cavity with Beam 
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Equivalent Circuit for a Cavity with Beam 

( ) [ ]{ }
2

221
1 (1 ) tan tan

4

c

g

sh

V
P b b

R
b b y f

b
= + + + + -

0 cosPower absorbed by the beam
 = 

Power dissipated in the cavity
sh

c

R i
b

V

f
=

2

(1 ) tan tan

1

1 (1 )

2

opt opt

opt

opt c
g

sh

b

b

b bV
P

R

b y f

b

+ =

= +

+ + +
=

Minimize Pg : 



Page 31 

Cavity with Beam and Microphonics 

• The detuning is now 
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Qext Optimization with Microphonics 
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Example 

7-cell, 1500 MHz
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Another Simple Model: 

Coaxial Half-wave Resonator 
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Coaxial Half-wave Resonator 

 

Capacitance per unit length 

 

 

 

 

 

Inductance per unit length 
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Center conductor voltage 

 

 

 

Center conductor current 

 

 

 

Line impedance 

Coaxial Half-wave Resonator 
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Coaxial Half-wave Resonator 

 

d: coaxial cylinders 

 

Vp : Voltage on center conductor 

Outer conductor at ground 

Ep: Peak field  on center conductor 

Peak Electric Field 
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Peak magnetic field 

Coaxial Half-wave Resonator 
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Power dissipation (ignore losses in the shorting plate) 

 

 

 

 

 

Coaxial Half-wave Resonator 
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Energy content 

Coaxial Half-wave Resonator 
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Geometrical factor 

 

 

 

 

Coaxial Half-wave Resonator 
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Shunt impedance      

Coaxial Half-wave Resonator 
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  R/Q 

Coaxial Half-wave Resonator 
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Some Real Geometries (l/4) 
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Some Real Geometries (l/4)  
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l/4 Resonant Lines 
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l/2 Resonant Lines 
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l/2 Resonant Lines – Single-Spoke 
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l/2 Resonant Lines – Double and Triple-Spoke 
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l/2 Resonant Lines – Multi-Spoke 
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1300 MHz 9-cell 
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Pill Box Cavity 

Hollow right cylindrical enclosure 

Operated in the TM010 mode 
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Modes in Pill Box Cavity 

• TM010  

– Electric field is purely longitudinal 

– Electric and magnetic fields have no angular 

dependence 

– Frequency depends only on radius, independent on 

length 

• TM0mn 

– Monopoles modes that can couple to the beam and 

exchange energy 

• TM1mn 

– Dipole modes that can deflect the beam 

• TE modes 

– No longitudinal E field 

– Cannot couple to the beam 
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TM Modes in a Pill Box Cavity 
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TM010 Mode in a Pill Box Cavity 
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TM010 Mode in a Pill Box Cavity 

Energy content 

 

 

Power dissipation 
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TM010 Mode in a Pill Box Cavity 

Energy Gain 
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Real Cavities 

Beam tubes reduce the electric field on axis 

 Gradient decreases 

 Peak fields increase 

 R/Q decreases 
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Real Cavities 
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Single Cell Cavities 

Electric field high at iris 

Magnetic field high at equator 
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Coupling between cells 
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Multi-Cell Cavities 

Mode frequencies: 

 

 

 

 

Voltages in cells: 
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Pass-Band Modes Frequencies 
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9-cell cavity 
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Cell Excitations in Pass-Band Modes 

9 Cell, Mode 1
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Historical Overview 
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Perfect Conductivity 

Kamerlingh Onnes and van der Waals 

in Leiden with the helium 'liquefactor' 

(1908)  
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Perfect Conductivity  

Persistent current experiments on rings have measured 

1510s

n

s

s
>

Perfect conductivity is not superconductivity 

 

Superconductivity is a phase transition 

A perfect conductor has an infinite relaxation time L/R 

Resistivity < 10-23 Ω.cm 

Decay time > 105 years 
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Perfect Diamagnetism (Meissner & Ochsenfeld 1933) 

0
B

t

¶
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¶
0B =

Perfect conductor Superconductor 
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Penetration Depth in Thin Films 

Very thin films 

Very thick films 
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Critical Field (Type I) 
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Superconductivity is destroyed by the application of a magnetic field 

Type I or “soft” superconductors 
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Critical Field (Type II or “hard” superconductors) 

Expulsion of the magnetic field is complete up to Hc1, and partial up to Hc2 

Between Hc1 and Hc2 the field penetrates in the form if quantized vortices 

or fluxoids 

 0
e

p
f =
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Thermodynamic Properties  

Entropy Specific Heat 

Energy Free Energy 
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Thermodynamic Properties  

  
( ) 1

2

When  phase transition at  is of  order  latent heat

At  transition is of  order  no latent heat

                                                          jump in specific heat

st

c c

nd

c

es

T T H H T

T T

C

< = Þ

= Þ

3

( ) 3 ( )

( )

( )

   electronic specific heat

  reasonable fit to experimental data

c en c

en

es

T C T

C T T

C T T

g

a

=

»



Page 75 

Thermodynamic Properties 
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The quadratic dependence of critical field on T is 

related to the cubic dependence of specific heat 

Energy Difference Between Normal and 

Superconducting State 
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Isotope Effect (Maxwell 1950) 

The critical temperature and the critical field at 0K are dependent 

on the mass of the isotope 

(0) with  0.5c cT H M a a-
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Energy Gap (1950s) 

At very low temperature the specific heat exhibits an exponential behavior 

 

Electromagnetic absorption shows a threshold 

Tunneling between 2 superconductors separated by a thin oxide film 

shows the presence of a gap 

 

 

/
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Two Fundamental Lengths 

• London penetration depth λ 

– Distance over which magnetic fields decay in 

superconductors 

• Pippard coherence length ξ 

– Distance over which the superconducting state decays 
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Two Types of Superconductors 

• London superconductors (Type II) 

– λ>> ξ 

– Impure metals 

– Alloys 

– Local electrodynamics 

 

• Pippard superconductors (Type I) 

– ξ >> λ 

– Pure metals 

– Nonlocal electrodynamics 
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Material Parameters for Some Superconductors 
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Phenomenological Models (1930s to 1950s) 

Phenomenological model: 

Purely descriptive 

 Everything behaves as though….. 

 

 

 

A finite fraction of the electrons form some kind of condensate 

that behaves as a macroscopic system (similar to superfluidity) 

 

At 0K, condensation is complete 

 

At Tc the condensate disappears 
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Two Fluid Model – Gorter and Casimir  
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Two Fluid Model – Gorter and Casimir 
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Superconducting state:

Normal state:

Recall   difference in free energy between normal and 

superconducting state
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The Gorter-Casimir model is an “ad hoc” model (there is no physical basis 

for the assumed expression for the free energy) but provides a fairly 

accurate representation of experimental results 
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Model of F & H London (1935) 

Proposed a 2-fluid model with a normal fluid and superfluid components 

 

ns : density of the superfluid component of velocity vs 

nn : density of the normal component of velocity vn 

2
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Model of F & H London (1935) 

2

2 2

2

0 = Constant

= 0

Maxwell:

F&H London postulated:

s s

s s

s s

s

s

J n e
E

t m

B
E

t

m m
J B J B

t n e n e

m
J B

n e

¶
=

¶

¶
Ñ´ = -

¶

æ ö¶
Þ Ñ´ + = Þ Ñ´ +ç ÷¶ è ø

Ñ´ +



Page 87 

Model of F & H London (1935) 

combine with  0 sB = JmÑ´
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The magnetic field, and the current, decay 

exponentially over a distance λ (a few 10s of nm) 
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From Gorter and Casimir two-fluid model

Model of F & H London (1935) 
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Model of F & H London (1935) 
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Penetration Depth in Thin Films 

Very thin films 

Very thick films 
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Quantum Mechanical Basis for London Equation  
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Assume   is "rigid", ie the field has no effect on wave function
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Pippard’s Extension of London’s Model  

Observations:  

-Penetration depth increased with reduced mean free path 

- Hc and Tc did not change 

-Need for a positive surface energy over 10-4 cm to explain 

existence of normal and superconducting phase in 

intermediate state  

Non-local modification of London equation  
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London and Pippard Kernels  

Apply Fourier transform to relationship between  
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London Electrodynamics 

Linear London equations 

 

 

 

together with Maxwell equations 

 

 

 

describe the electrodynamics of superconductors at all T if: 

– The superfluid density ns is spatially uniform 

– The current density Js is small 
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Ginzburg-Landau Theory 

• Many important phenomena in superconductivity occur 

because ns is not uniform 

– Interfaces between normal and superconductors 

– Trapped flux 

– Intermediate state 

 

• London model does not provide an explanation for the 

surface energy (which can be positive or negative) 

 

• GL is a generalization of the London model but it still 

retain the local approximation of the electrodynamics 
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Ginzburg-Landau Theory 

• Ginzburg-Landau theory is a particular case of 
Landau’s theory of second order phase transition 

 

• Formulated in 1950, before BCS 

 

• Masterpiece of physical intuition 

 

• Grounded in thermodynamics 

 

• Even after BCS it still is very fruitful in analyzing the 
behavior of superconductors and is still one of the 
most widely used theory of superconductivity 
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Ginzburg-Landau Theory 

• Theory of second order phase transition is based on 
an order parameter which is zero above the transition 
temperature and non-zero below 

 

• For superconductors, GL use a complex order 
parameter Ψ(r) such that |Ψ(r)|2 represents the 
density of superelectrons 

 

• The Ginzburg-Landau theory is valid close to Tc 
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Ginzburg-Landau Equation for Free Energy 

• Assume that Ψ(r) is small and varies slowly in 

space 

 

• Expand the free energy in powers of Ψ(r) and its 

derivative 
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Field-Free Uniform Case 

Near Tc  we must have  

 

At the minimum 
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Field-Free Uniform Case 

At the minimum 
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Field-Free Uniform Case 

Identify the order parameter with the density of superelectrons 
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Field-Free Nonuniform Case 

Equation of motion in the absence of electromagnetic 

field 
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Field-Free Nonuniform Case 
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2 Fundamental Lengths 

London penetration depth: length over which magnetic field decay 

Coherence length: scale of spatial variation of the order parameter 

(superconducting electron density) 
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 Surface Energy  
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Surface Energy 

2 2
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Interface is stable if >0
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Superconducting up to H  where superconductivity is destroyed globally
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Magnetization Curves 



Page 108 

Intermediate State 

Vortex lines in 

Pb.98In.02 At the center of each vortex is a 

normal region of flux h/2e 
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Critical Fields  
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Even though it is more energetically favorable for a type I superconductor 

to revert to the normal state at Hc, the surface energy is still positive up to 

a superheating field Hsh>Hc → metastable superheating region in which 

the material may remain superconducting for short times. 
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Superheating Field  
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The exact nature of the rf critical 

field of superconductors is still 

an open question 
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Material Parameters for Some Superconductors  



Page 112 

BCS  

• What needed to be explained and what were the 

clues? 

 

– Energy gap  (exponential dependence of specific heat)  

 

– Isotope effect (the lattice is involved) 

 

– Meissner effect 
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Cooper Pairs 

 

Assumption:  Phonon-mediated attraction between   

electron of equal and opposite momenta located 

within          of   Fermi surface 

  

Moving electron distorts lattice and leaves behind a 

trail of positive charge that attracts another electron 

moving in opposite direction 

 

Fermi ground state is unstable 

 

Electron pairs can form bound  

states of lower energy 

 

Bose condensation of overlapping 

Cooper pairs into a coherent 

Superconducting state 

 

Dw
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Cooper Pairs 

One electron moving through the lattice attracts the positive ions. 

Because of their inertia the maximum displacement will take place 

                                                  behind. 
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BCS 

The size of the Cooper pairs is much larger than their spacing 

They form a coherent state 



Page 116 

BCS and BEC 
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BCS Theory 
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BCS 

• Hamiltonian 

 

 

 

 

 

• Ground state wave function 

  destroys an electron of momentum 

  creates an electron of momentum 

  number of electrons of momentum 
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BCS 

• The BCS model is an extremely simplified model of reality 

– The Coulomb interaction between single electrons is ignored 

– Only the term representing the scattering of pairs is retained 

– The interaction term is assumed to be constant over a thin 

layer at the Fermi surface and 0 everywhere else 

– The Fermi surface is assumed to be spherical 

 

• Nevertheless, the BCS results (which include only a very few 

adjustable parameters) are amazingly close to the real world 
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BCS 
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BCS 
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BCS Condensation Energy 
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BCS Energy Gap 

At finite temperature: 

  Implicit equation for the temperature dependence of the gap: 
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BCS Excited States 

0
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Energy of excited states:
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BCS Specific Heat 
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Electrodynamics and Surface Impedance  

in BCS Model 
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Penetration Depth  

2

4

2
( )

( )

dk
dk

K k k

T
T

T

l
p

l

=
+

æ ö
ç ÷è ø

ò

c

c

specular

1
Represented accurately by       near 

1-



Page 128 

Surface Resistance  
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Surface Resistance  
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Surface Resistance  
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Surface Resistance 
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Surface Impedance - Definitions 

• The electromagnetic response of a metal, 

whether normal or superconducting, is described 

by a complex surface impedance,   Z=R+iX   

   

  R :  Surface resistance 

  X :  Surface reactance 

 

  Both R and X are real 
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Definitions 

For a semi- infinite slab: 
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Definitions 

The surface resistance is also related to the power flow 

into the conductor 

 

 

 

 

 

 

and to the power dissipated inside the conductor 
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Normal Conductors (local limit) 

Maxwell equations are not sufficient to model the 

behavior of electromagnetic fields in materials.  

Need an additional equation to describe material 

properties 

( ) 0
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3 10 secFor Cu at 300 K, 

so for wavelengths longer than infrared
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Normal Conductors (local limit) 

In the local limit 

 

The fields decay with a characteristic 

length (skin depth) 
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Normal Conductors (anomalous limit) 

• At low temperature, experiments show that the surface 

resistance becomes independent of the conductivity 

 

• As the temperature decreases, the conductivity s increases 

– The skin depth decreases  

 

– The skin depth (the distance over which fields vary) can 

become less then the mean free path of the electrons (the 

distance they travel before being scattered) 

– The electrons do not experience a constant electric field 

over a mean free path 

– The local relationship between field and current is not 

valid ( ) ( )J z E zs¹
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Normal Conductors (anomalous limit) 

Introduce a new relationship where the current is related to 

the electric field over a volume of the size of the mean 

free path (l) 

 

 

 

 

 

Specular reflection: Boundaries act as perfect mirrors 

Diffuse reflection: Electrons forget everything 
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Normal Conductors (anomalous limit) 

In the extreme anomalous limit 

 

( )
1/3

2 2

09
1 08

3
1 3

16

1 :

  :  fraction of electrons specularly scattered at surface

 fraction of electrons diffusively scattered

p p

l
Z Z i

p

p

m w

p s
= =

æ ö
= = +ç ÷

è ø

-

2

2

3
1

2 cl

l

d

æ ö
ç ÷è ø



Page 140 

1/3
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Surface Resistance of Superconductors 

Superconductors are free of power dissipation in static fields. 

In microwave fields, the time-dependent magnetic field in the 

penetration depth will generate an electric field.  

 

 

The electric field will induce oscillations in the normal 

electrons, which will lead to power dissipation 
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Surface Impedance in the Two-Fluid Model 

In a superconductor, a time-dependent current will be carried 

by the Copper pairs (superfluid component) and by the 

unpaired electrons (normal component) 

0

2

0 0

0

2

2

0

(

2
( )

2 1

Ohm's law for normal electrons)

with     

n s

i t

n n

i t i tc
s e c

e

i t

c
n s s

e L

J J J

J E e

n e
J i E e m v eE e

m

J E e

n e
i

m

w

w w

w

s

w

s

s s s s
w m l w

-

- -

-

= +

=

= = -

=

= + = =



Page 143 

Surface Impedance in the Two-Fluid Model 

For normal conductors 1
sR

sd
=

For superconductors 
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The superconducting state surface resistance is proportional to the 

normal state conductivity 
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Surface Impedance in the Two-Fluid Model 
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Surface Impedance in the Two-Fluid Model 

For niobium we need to replace the London penetration depth with 

1 /L ll xL = +

As a result, the surface resistance shows a minimum when 

lx »
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Surface Resistance of Niobium 

Surface Resistance - Nb - 1500 MHz
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Electrodynamics and Surface Impedance  

in BCS Model 
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Surface Resistance of Superconductors 
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Surface Resistance of Superconductors 

• The surface resistance of superconductors depends on 

the frequency, the temperature, and a few material 

parameters 

– Transition temperature 

– Energy gap  

– Coherence length 

– Penetration depth 

– Mean free path 

 

• A good approximation for T<Tc/2 and ω<<Δ/h is  

2 exps res
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R R
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Surface Resistance of Superconductors 
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In the dirty limit 

 

In the clean limit 

 

Rres: 

Residual surface resistance 

No clear temperature dependence 

No clear frequency dependence 

Depends on trapped flux, impurities, grain boundaries, … 
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Surface Resistance of Superconductors 
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Surface Resistance of Niobium 
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Surface Resistance of Niobium 
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Super and Normal Conductors 

• Normal Conductors 

– Skin depth proportional to ω-1/2 

– Surface resistance proportional to ω1/2 → 2/3 

– Surface resistance independent of temperature (at low T) 

– For Cu at 300K and 1 GHz, Rs=8.3 mΩ 

 

• Superconductors 

– Penetration depth independent of ω 

– Surface resistance proportional to ω2 

– Surface resistance strongly dependent of temperature 

– For Nb at 2 K and 1 GHz, Rs≈7 nΩ 

 

However: do not forget Carnot 
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The Real World 
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Losses in SRF Cavities 

• Different loss mechanism are associated with 

different regions of the cavity surface 

Electric field high at iris 

Magnetic field high 

at equator 

Ep/Eacc ~ 2 

Bp/Eacc ~ 4.2 mT/(MV/m) 



Page 157 

Characteristics of Residual Surface Resistance 

• No strong temperature dependence 

• No clear frequency dependence 

• Not uniformly distributed (can be localized) 

• Not reproducible 

• Can be as low as 1 nΩ 

• Usually between 5 and 30 nΩ 

• Often reduced by UHV heat treatment above 800C 
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Origin of Residual Surface Resistance 

• Dielectric surface contaminants (gases, chemical 

residues, dust, adsorbates) 

• Normal conducting defects, inclusions 

• Surface imperfections (cracks, scratches, 

delaminations) 

• Trapped magnetic flux 

• Hydride precipitation 

• Localized electron states in the oxide (photon 

absorption) 

Rres is typically 5-10 nW at 1-1.5 GHz 
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Trapped Magnetic Field 

A parallel magnetic filed is expelled from a 

superconductor. 

What about a perpendicular magnetic field? 

The magnetic field will be concentrated in normal cores where it is 

equal to the critical field. 
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Trapped Magnetic Field 

• Vortices are normal to the surface 

• 100% flux trapping 

• RF dissipation is due to the normal 

conducting core, of resistance Rn 

2

i
res n

c

H
R R

H
 Hi

 = residual DC 

magnetic field 

• For Nb:       

 

• While a cavity goes through the superconducting transition, the ambient 

magnetic filed cannot be more than a few mG. 

• The earth’s magnetic shield must be effectively shielded. 

• Thermoelectric currents can cause trapped magnetic field, especially in 

cavities made of composite materials.  
 

0.3resR  W to 1 n /mG  around 1 GHz
Depends on material treatment 
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Trapped Magnetic Field 

A fraction                   of the material will be in the normal state.  

 

 

This will lead to an effective surface resistance  

 

 

For Nb:  

 

 

While a cavity goes through the superconducting transition, the ambient 

magnetic filed cannot be more than a few mG. 

 

The earth’s magnetic shield must be effectively shielded. 

 

In cavities made of composite materials, thermoelectric currents can cause 

trapped magnetic field. 

/ cH H

( )/n cH Hr
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Rres Due to Hydrides (Q-Disease) 

•  Cavities that remain at 70-150 K for several hours (or slow cool-down, < 1 

K/min) experience a sharp increase of residual resistance 

•  More severe in cavities which have been heavily chemically etched 
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Multipacting 

•  No increase of Pt for increased Pi during MP 

•  Can induce quenches and trigger field emission 
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Multipacting 

Multipacting is characterized by an exponential growth in the number of 

electrons in a cavity 

 

Common problems of RF structures (Power couplers, NC cavities…) 

 

Multipacting requires 2 conditions: 

•  Electron motion is periodic (resonance condition) 

•  Impact energy is such that secondary emission coefficient is >1 
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One-Point Multipacting 

One-point MP 

Cyclotron frequency: 

Resonance condition:  

Cavity frequency (g) = n x cyclotron 

frequency 

 Possible MP barriers given by 

n: MP 

order 

The impact energy scales as 
2 2

2

g

e E
K

m



+ SEY, d(K), > 1 = MP 

Empirical formula:    0
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Two-Point Multipacting 

Empirical formula: 

   0

0.6
Oe MHz

2 1
nH f
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Secondary Emission in Niobium 
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Field Emission 

• Characterized by an exponential drop of the Q0 

• Associated with production of x-rays and emission of dark current 
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DC Field Emission from Ideal Surface 

Fowler-Nordheim model 

6 2 9 3/21.54 10 6.83 10
exp

: )

:

:

2  Current density (A/m

  Electric field (V/m)

  Work function (eV)

E
J

E

J

E

- æ ö´ ´ F
= -ç ÷F è ø

F



Page 170 

Field Emission in RF Cavities 

Acceleration of 

electrons drains cavity 

energy 
 

Impacting electrons produce: 

•  line heating detected by 

thermometry  

•  bremsstrahlung X rays 

Foreign particulate 

found at emission 

site 

FE in cavities occurs at fields that 

are up to 1000 times lower than 

predicted…  

5/26 9 3/21.54 10 ( ) 6.83 10
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C, O, Na, In Al, Si 

Stainless steel 

Melted 

Melted 

Melted 

Example of Field Emitters 
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Type of Emitters 

Smooth nickel particles emit 

less or emit at higher fields.  

Ni 

V 

•Tip-on-tip model 

explains why  only 10% 

of particles are emitters 

for Epk < 200 MV/m. 
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Cures for Field Emission 

• Prevention: 

– Semiconductor grade acids and solvents 

– High-Pressure Rinsing with ultra-pure water 

– Clean-room assembly 

– Simplified procedures and components for 

assembly 

– Clean vacuum systems (evacuation and venting 

without re-contamination) 

 

• Post-processing: 

– Helium processing 

– High Peak Power (HPP) processing 
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Helium Processing 

•  Helium gas is introduced in the cavity at a pressure just 

below breakdown (~10-5 torr) 

•  Cavity is operating at the highest field possible (in heavy 

field emission regime) 

•  Duty cycle is adjusted to remain thermally stable 

•  Field emitted electrons ionized helium gas 

•  Helium ions stream back to emitting site 

–  Cleans surface contamination 

–  Sputters sharp protrusions 
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Thermal Breakdown (Quench) 

Localized heating 

Hot area increases with field 

At a certain field there is a thermal runaway, the field collapses 

• sometimes displays a oscillator behavior 

• sometimes settles at a lower value 

• sometimes displays a hysteretic behavior 
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Thermal Breakdown 

Thermal breakdown occurs when the heat generated at the hot spot is 

larger than that can be transferred to the helium bath causing T > Tc: 

“quench” of the superconducting state 


