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ABSTRACT

APPLICATION OF CHEBYSHEV FORMALISM TO IDENTIFY
NONLINEAR MAGNETIC FIELD COMPONENTS IN BEAM

TRANSPORT SYSTEMS

Michael Spata
Old Dominion University, 2012
Director: Dr. Geoffrey Krafft

An experiment was conducted at Jefferson Lab’s Continuous Electron Beam Ac-

celerator Facility to develop a beam-based technique for characterizing the extent

of the nonlinearity of the magnetic fields of a beam transport system. Horizontally

and vertically oriented pairs of air-core kicker magnets were simultaneously driven at

two different frequencies to provide a time-dependent transverse modulation of the

beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the

position data at eight different points along the beamline was then used to measure

the amplitude of these frequencies. For a purely linear transport system one expects

to find solely the frequencies that were applied to the kickers with amplitudes that

depend on the phase advance of the lattice. In the presence of nonlinear fields one

expects to also find harmonics of the driving frequencies that depend on the order

of the nonlinearity. Chebyshev polynomials and their unique properties allow one

to directly quantify the magnitude of the nonlinearity with the minimum error. A

calibration standard was developed using one of the sextupole magnets in a CEBAF

beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the

magnets in the Transport Recombiner beamline to measure their multipole content

as a function of transverse position within the magnets.
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CHAPTER 1

INTRODUCTION

In this thesis a technique for characterizing the extent of the nonlinearity of the mag-

nets of beam transport systems is investigated both theoretically and experimentally.

There are well over 2200 magnets in the CEBAF accelerator with more than 50 dis-

tinct types. The fields of these dipole and quadrupole magnets are specified and

designed to be linear across the aperture that the electron beam occupies. Errors

in the real magnetic field of these beamline elements relative to an ideal model can

occur for several reasons.

Symmetry conditions allow the existence of certain systematic errors and forbid

others depending on the magnet type. For example in addition to the quadrupole

edge focussing of a dipole there is also an allowed second order sextupole term. In

addition to these systematic multipole errors one can also find random errors that

can be attributed to deficiencies in assembly, manufacturing or powering.

Another source of error in the machine is misalignment of these components

relative to the ideal model. The accelerator design specifies the transverse and lon-

gitudinal location of all of these beamline elements with a precision of 10 microns.

The real machine can only be aligned to within 250 microns of the design. These

positional errors can be compounded by roll, tilt or yaw errors in the angle of the

dipoles and quadrupoles. Errors of this sort result in cross-plane coupling of the

beam transport which can be very difficult to manage in the real machine.

Traditional methods of tuning the accelerator to account for errors in the linear

optics have utilized discrete transverse perturbations of the beam’s trajectory relative

to the design trajectory. Starting from the initial point in the lattice where the

transverse kick occurs, the beam position will oscillate about the reference trajectory

with an amplitude and phase that depend on the quasi-periodic focussing strength of

the lattice. The phase and amplitude of these oscillations are compared to a design

model while tuning quadrupoles at key locations are adjusted to minimize errors.

To detect the nonlinear errors of the lattice one must use nonlinear perturbation

techniques. Simultaneous sinusoidal modulation of the beam at two locations using
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TABLE 1. Research Timeline

Time Period Milestone
July 2009 Thesis Proposal Presented to the Committee
Fall 2009 Data Acquisition System Development and Installation in Arc 1

December 2009 First Test Run in Arc 1 to Characterize MAZ Kicker Magnets
March 2010 Sextupole Calibration Beam Test in Arc 1
April 2010 Thesis Update Presented to the Committee
July 2010 Sextupole and Dipole Measurements in Arc 1
Fall 2010 Design, Fabricate and Measure MAK Kicker Magnets

December 2010 Install Kicker Magnets in Arc 6 Recombiner
January 2011 Move Data Acquisition System from Arc 1 to Arc 6
February 2011 First Test Run in Arc 6 Recombiner to Commission Kicker Magnets

April 2011 First Beam Test in Arc 6 Recombiner
May 2011 Final Set of Arc 6 Recombiner Measurements

Summer 2011 BPM Test Stand Development and Linearity Studies
September 2011 Presentation at the International Particle Accelerator Conference

April 2012 Thesis Defense

two distinct frequencies is used in this thesis to identify the nonlinear fields in the

lattice.

In Table 1 a timeline for this research is presented to provide an account of what

was accomplished over the last three years. The rest of this introduction gives an

overview of the chapters that follow.

In the second chapter an introduction to the CEBAF accelerator is provided.

The first section provides an historical overview of the facility and a look ahead

towards the 12 GeV Upgrade. This is followed by a more technical description of the

accelerator.

The third chapter provides the theoretical basis for the experiment. First comes

the derivation of the functional form of the magnetic fields for dipoles, quadrupoles

and sextupoles as well as the two-dimensional general multipole expansion. This is

followed by a description of beam optics and the matrix formalism that is central

to research in accelerator physics. The development of a simple beamline model to

demonstrate how simultaneous sinusoidal beam modulations will mix in the presence

of non-linear magnetic fields is then provided. The chapter finishes with a discus-

sion of Chebyshev polynomials and their unique properties for minimizing errors in
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modulation experiments.

The fourth chapter describes the experimental equipment that was used for this

research. The design, fabrication and measurement of the AC kicker magnets that

were used to modulate the beam is presented. This is followed by a description of

the Beam Position Monitors that are used to measure the position and modulation

pattern of the electron beam. Next comes a description of the beam timing structure

that was used for this experiment. The last section gives an overall description of

the data acquisition system.

The fifth chapter describes the experimental measurements and simulations that

were done in support of this research. First comes a discussion on the analysis

and correction of the nonlinearity of the Beam Position Monitors. This is followed

by a description of the experimental procedures used for taking data. The next

section presents the magnetic field measurements, from the Jefferson Lab’s Magnet

Measurement Facility, of an Arc 1 dipole. The chapter finishes with a discussion of

simulations that were conducted as part of this research.

The sixth chapter provides a description of the analysis and presents the results

for the sextupole calibration runs, the Arc 1 dipole measurements as well as the

results from the study of the Arc 6 Recombiner beamline.

The seventh chapter provides some conclusions and a summary for the work

presented in this thesis.
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CHAPTER 2

THE CEBAF ACCELERATOR

2.1 HISTORICAL TIMELINE

CEBAF was designed and constructed for the Department of Energy (DOE) as a

4 GeV, 200 µA five pass, recirculating electron accelerator and has been operating for

Nuclear Physics research since November 1995. A timeline showing some important

milestones for the facility is shown in Table 2. The initial construction took a little

over six years with the machine being fully installed by 1993. An intense two year

commissioning period culminated with the first five pass CW beam delivered to

experimental Hall C on 25 May 1995.

CEBAF reached its design goal of 1 MW of beam power a year later. Beamlines

to experimental Halls A and B were completed and commissioned over the next

two years with first beam delivery in 1997. Simultaneous three-hall operations was

achieved in 1998.

The energy reach of the accelerator was enhanced to 6 GeV beginning in 2000

through a multi-year refurbishment program of 25% of the machine’s two linear

accelerators. Since then the facility has been conducting a robust Nuclear Physics

program for over thirty weeks a year at energies up to 6 GeV.

While the laboratory was first starting up the 6 GeV program proposals were

already being developed to double the machine’s energy to 12 GeV and to add a fourth

experimental Hall D. The DOE accepted the proposal and provided first funding for

the conceptual design phase in 2004. Approval to begin the engineering and design

phase of the project came in 2006. Construction for the $310 million dollar project

began in September of 2008. During an extended shutdown in 2011 the laboratory

completed the first phase of the 12 GeV upgrade and then resumed the 6 GeV

program for a final run which ended on 18 May 2012. The accelerator then shut

down for an eighteen month shutdown to finish the 12 GeV Upgrade. Accelerator

commissioning is scheduled to begin in October of 2013 with all beamlines completed

by 2016.
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TABLE 2. CEBAF Timeline

Year Milestone
1984 Site selection and first DOE funding provided for CEBAF
1987 Construction begins on the new facility
1991 Injector beamline is installed and commissioned
1993 Linear accelerators and all 6 km of beamline are installed
1995 First 4 GeV CW beam delivery to experimental Hall C
1996 CEBAF reaches 1 MW of beam power
1997 First beam delivery to experimental Hall A
1997 First beam delivery to experimental Hall B
1998 Simultaneous three-hall operations at 4 GeV
2000 CEBAF reaches 6 GeV with 10 refurbished cryomodules
2004 12 GeV Upgrade is funded and engineering/design work begins
2011 First phase of 12 GeV Upgrade completed
2012 Final 6 GeV run with beam to Halls A,B,C ended in May
2013 Final phase of 12 GeV Upgrade to be completed in October
2013 12 GeV Commissioning of the new Accelerator begins in November
2013 One-pass beam at 2.2 GeV by the end of the year
2014 First beam to Hall A at greater than 6 GeV in February
2014 First beam to Hall D at greater than 10 GeV in May
2016 First beam to Halls B and C at 11 GeV

2.2 ACCELERATOR OVERVIEW

This section provides a high level description of the CEBAF accelerator which

is shown schematically in Fig. 1. The present machine is designed to accelerate

electrons to 6 GeV by recirculating the beam five times through two 1497 MHz

superconducting RF (SRF) linear accelerators. Each of the 200 meter long linacs

(see Fig. 2) consist of twenty cryomodules containing eight 5-cell cavities operating

at a superfluid liquid helium temperature of 2 K. A photograph of one of the 5-cell

cavities showing the elliptical cell shape is shown in Fig. 3. Each cavity has an active

length of 0.5 m. The average accelerating gradient for the cavities is 7.5 MV/m

resulting in an energy increase of 600 MeV per linac or 1200 MeV per pass.

The beam starts in the upper left corner of the diagram in Fig. 1 at the Injec-

tor’s polarized electron source, where three interleaved 499 MHz lasers are used to

create the RF micropulse structure of the electron beam. The three lasers are at the
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FIG. 1. A schematic layout of the CEBAF accelerator showing the characteristic
racetrack design (Drawing courtesy of Tom Oren).

third subharmonic of the SRF cavities, separated in phase by 120◦ and are used to

independently control the beam current to each of the three experimental Halls A,B,

and C. The collinear lasers are focussed onto a small wafer of Gallium Arsenide, a

semiconductor cathode material with high quantum efficiency, to create the beam

of electrons. The cathode is held at a potential of 130 kV, hence the initial beam

energy of 130 keV.

The next segment of the Injector provides longitudinal bunching of the electron

beam and acceleration to a relativistic energy of 6.3 MeV using a warm copper

graded-beta cavity followed by two 5-cell SRF cavities. The beam is then acceler-

ated to the final injection energy of 67 MeV using two standard eight-cavity SRF

cryomodules. The final segment of the Injector contains a set of quadrupoles used

for matching the beam envelope to the next segment and a chicane section for trans-

porting the beam to the entrance of the North Linac.

The beam is accelerated to 667 MeV after the first transit through the twenty

cryomodules of the North Linac. Each of the one hundred and sixty SRF cavities are

phased so that their peak electric field coincides with the arrival of the electron bunch.

Between each linac cryomodule is a quadrupole for focussing the beam. The quads
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FIG. 2. A photograph of one of the CEBAF linear accelerators. Each of the linac’s
twenty cryomodules operate at 2 K and provide an average energy gain of 30 MeV
(Photo from JLAB archive).

are arranged in an alternating gradient structure with one period of oscillation of

the beam envelope for the first pass beam occurring every third cryomodule. This is

referred to as a 120◦ FODO lattice. The quadrupole strength increases monotonically

as the beam gains energy in the linac.

At the end of the North Linac is the East Spreader beamline which changes the

vertical elevation of the beam. The first pass beam is directed towards the uppermost

Arc 1 beamline. The recirculation arc bends the beam through 180◦ and is followed

by a Recombiner segment that is mirror symmetric to the Spreader. The Recombiner

lowers the beam back to linac elevation to prepare for another 600 MeV energy gain.

The Spreader/Arc/Recombiner beamline is an isochronous and achromatic trans-

port system. In an isochronous system all electrons travel the same distance inde-

pendent of energy. In an achromatic system the position and angle of the beam at

the exit is independent of energy. Within the Recombiner segment are four tuning
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FIG. 3. A photograph of one of the CEBAF 5-cell niobium cavities. The elliptical
cells have an active length of 0.5 m with each cavity providing an average energy
gain of 3.75 MeV (Photo from JLAB archive).

quadrupoles for matching the beam envelope to the next Arc.

The beam is transported through the South Linac for the first time and accel-

erated to 1267 MeV. The SRF cavity phasing and quadrupole configuration of the

South Linac is identical to what was mentioned above for the North Linac. At the

end of the linac is the West Spreader which changes the vertical elevation of the beam

for transport into the Arc 2 and West Recombiner beamlines. The optical properties

of this Spreader/Arc/Recombiner section are identical to the Arc 1 section.

Between the end of the West Spreader and the start of the West Arc is a beam

extraction system consisting of horizontally deflecting RF Separator cavities [1] and

pairs of septa magnets. The cavities operate at 499 MHz which is the same frequency

as the three-laser system in the Injector. If Halls A, B, or C require beam at this first

pass energy the cavities are turned on and phased to provide peak deflection to the

left for that hall’s electron bunch. The other two beams will be deflected to the right

at half the angle due to the 120◦ phase relationship between the bunches. Beyond the

separator cavities the beams drift apart and then enter the first Septa magnet which
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FIG. 4. A photograph of a section of the East Arc. The lowest energy Arc 1 beamline
is at the top with Arcs 3,5,7 and 9 stacked below (Photo from JLAB archive).

has a strong horizontal dipole field on the left of the septa and zero field on the right.

This dipole field provides an additional horizontal kick for the extracted beam. The

beams continue to separate as they drift towards the second Septa which provides a

final kick of the extracted beam towards the Beam Switchyard Recombiner section

of the machine.

The recirculated beams are reinjected into the North Linac for another 600 MeV

energy gain. To ensure that the arrival time of the second pass beam is at the crest

of the RF wave a three magnet chicane system in the preceding Arc is used to change

the distance that the beam travels. These so-called Dogleg magnets are capable of

changing the path length by 1 cm or 18 degrees of the 1497 MHz RF wave.

As the beam leaves the North Linac for the second time it once again transits the

East Spreader but this time at a higher energy. The total vertical deflection is 0.5 m

less than the first time through resulting in beam transport into Arc 3. The mirror
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FIG. 5. A photograph showing stacks of magnet assemblies in the East Arc. The
order of elements is sextupole, BPM, quadrupole and corrector (Photo from JLAB
archive).

symmetric Recombiner returns the beam to the south linac elevation for another

energy gain of 600 MeV. The optimal arrival time for the second pass beam in the

South Linac is controlled by the Arc 3 Dogleg magnets.

This pattern repeats for each pass around the accelerator with beams extracted

as necessary to meet the Nuclear Physics program. The final 5-pass energy, which is

6067 MeV, can be shared by all three user facilities through the use of a vertically

deflecting extraction system in the Beam Switchyard Recombiner beamline. The

separator cavities are phased to allow the Hall B beam to pass through on zero-

crossing while the Hall A beam is kicked up and the Hall C beam is kicked down. A

pair of vertical Septa are used to increase the separation.

The Beam Switchyard Recombiner returns the extracted beams to the proper

elevation for transport into one of the three hall’s beamlines. A stacked pair of
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horizontally deflecting magnets called the Lambertson kicks the beams towards the

proper hall for that pass. The Hall A beam enters the upper channel and is deflected

to the right. The Hall C beam enters the lower channel and is deflected left. The

Hall B beam enters the center channel and is undeflected.

The beam for Hall A is transported to the target through a right hand bend of

37.5 degrees and terminates in a 1 MW beam dump. The hall has two polarimiters

for measuring the polarization of the beam. For most experiments the hall uses an

electron spectrometer and a hadron spectrometer to conduct their research.

The Hall B target is approximately 3.4 m above the linac elevation. The beam

is transported to the hall through a pair of antisymmetric bends and a ramp section

to arrive on target. The hall can perform tagged photon experiments by sending the

beam through a thin radiator and then dumping the electron beam vertically into a

beam dump. The photon beam then hits the target and the electron that created

the photon is tagged in the electron spectrometer. The hall can also turn off the

tagging system, remove the radiator and take electrons directly onto the target. The

spectrometer for this hall is called the CEBAF Large Acceptance Spectrometer and

surrounds the entire target for nearly 4π steradians of acceptance.

The Hall C transport line is mirror symmetric to Hall A with a 37.5 degree bend

to the left. The hall also has two polarimiters for measuring the polarization. While

the initial physics program did use a pair of spectrometers similar to Hall A this hall

has more recently been used to field more specialized experiments.
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CHAPTER 3

THEORY

In this chapter the theoretical basis for the research presented in this thesis is de-

veloped. The fundamental characteristics of the different types of magnets that are

used in charged particle transport is presented in section 3.1 [2]. To track the general

path of the beam from one part of the accelerator to the next we need a mathemati-

cal framework to represent the different types of magnets that the beam encounters.

The components that make up a beamline are collectively referred to as the lattice.

A standard matrix formalism [3] for representing the linear optics of particle accel-

erators is presented in section 3.2. A simple model to indicate how nonlinear effects

can be included in the tracking of a beam through the lattice is shown in section 3.3.

The chapter concludes with an introduction to Chebyshev polynomials [4] which are

used as the expansion basis for fitting the spectra that result from the transverse

modulation of the beam.

3.1 MAGNETS

Accelerators are designed to transport charged particles along a carefully pre-

scribed path which is referred to as the design trajectory. Beams of electrons tend

to diverge from one another due to the mutual repulsive Coulomb forces that act

between them. Electromagnetic fields are used to focus the electrons back to the

design trajectory. These restoring forces originate from the classic Lorentz forces

given by

~F = e
[
~E + ~v × ~B

]
=
d (γm~v)

dt
, (1)

where ~E is the electric field, ~B is the magnetic induction, ~v is the velocity, and

γm~v is the relativistic momentum. When the beam is at non-relativistic energies

both electric and magnetic fields may be used to guide the beam. At relativistic

energies we have ~F = e
[
~E + c ~B

]
, so a magnetic field of strength B = 1 Tesla has

the equivalent effect of an electric field of strength E = 300 MV/m. Conventional

designs of magnets can easily reach a field strength of 1 T. Achieving electric field
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strengths of 100 MV/m is however impractical so magnetic fields are generally used

in relativistic beam transport.

Setting the electric field to zero in Eq. (1) and using the standard relationship for

the cross product

~v × ~B =

∣∣∣∣∣∣∣∣
i j k

vx vy vz

Bx By Bz

∣∣∣∣∣∣∣∣ , (2)

we can derive the three cartesian components for the magnetic part of the Lorentz

force. They are given by

d (γmvx)

dt
= e [vyBz − vzBy] , (3)

d (γmvy)

dt
= e [vzBx − vxBz] , (4)

d (γmvz)

dt
= e [vxBy − vyBx] . (5)

The length of a typical accelerator magnet is much larger than it’s transverse

aperture or bore radius. This means that the longitudinal field along the z direction

is much smaller than the transverse fields along the x and y directions. This hard

edge model is a good approximation for real magnets. Setting Bz to zero in Eq. (3)

and rearranging terms gives an expression for the change in transverse momentum

∆ (γmvx) = |e| [vzBy] ∆t. (6)

Rewriting the parameter ∆t in terms of the beam’s longitudinal velocity vz and the

length of the magnet L we can write

∆ (γmvx) = |e| [vzBy]
L

vz
, (7)

∆vx =
|e|
γm

ByL. (8)

The longitudinal velocity is related to the transverse velocity by vx = vz tan θ. Since

vz >> vx we can use the small angle approximation and write

∆θ =
∆vx
vz

=
|e|

γmvz
ByL. (9)

The change in angle is proportional to the strength of the transverse magnetic field

times the length of the magnet and inversely proportional to the beam’s longitudinal

momentum.
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Using the most practical units for accelerator physics we have the numerical

expression

∆θ(rad) = 2.9979× 10−4
By(G)L(cm)

pz(MeV/c)
. (10)

Returning to Eq. (9) and rearranging terms we have

∆θ

L
=
|e|

γmvz
By =

|e|
pz
By. (11)

Introducing the momentum rigidity Bρ = pz/e and writing the left side in terms of

the radius of curvature we have

1

R
=

1

Bρ
By. (12)

Since the transverse size of the electron beam is much smaller than the radius of

curvature we can expand the magnetic field about the nominal trajectory in the

power series as

By(x) = B0 +
dBy

dx
x+

1

2!

d2By

dx2
x2 +

1

3!

d3By

dx3
x3 + · · · . (13)

Multiplying by 1/Bρ

1

Bρ
By(x) =

1

Bρ
B0 +

1

Bρ

dBy

dx
x+

1

Bρ

1

2!

d2By

dx2
x2 +

1

Bρ

1

3!

d3By

dx3
x3 · · · , (14)

and introducing some constants to simplify the expression we can write

1

Bρ
By(x) =

1

R
+ kx+

1

2!
mx2 +

1

3!
ox3 + · · · . (15)

The magnetic field near the beam can be regarded as a sum of multipoles, each of

which has a different effect on the beam. The first term is the dipole field responsible

for beam steering. The next term is the quadrupole field used for focussing the beam

and together with the dipole term comprise the linear optics of the accelerator. The

third term is the sextupole field which is typically used for chromatic compensation.

The last term is the octupole field which is used for the compensation of field errors

in a lattice. The higher order multipoles can also be attributed to field errors in

the dipole and quadrupole magnets which need to be minimized through the magnet

design process.

The CEBAF accelerator consists of over 2800 magnets including dipoles,

quadrupoles, correctors, and sextupoles. In the rest of this section the theoreti-

cal basis for these iron dominated magnets is developed. Following is a derivation of
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the functional form of the magnetic field within the gap for each magnet type. This

result is then used to show how the strength of that field depends on the current in

the coils and the gap between the poles.

For static electric fields the differential form of Ampere’s Law is

∇× ~H = ~J. (16)

The current density ~J is zero within the vacuum space of the beam pipe where we

are interested in knowing the field and so

∇× ~H = 0. (17)

From vector calculus it is always true that∇×∇φ = 0 for an arbitrary scalar potential

φ. Therefore, Eq. (17) is automatically satisfied by allowing ~H to be written in terms

of a scalar potential,

~H = ∇φ. (18)

For convenience we use the magnetic flux density ~B = µ0
~H, where µ0 is the perme-

ability of free space. Re-scaling the potential according to Φ(x, y) = µ0φ(x, y) gives

the expression

~B = ∇Φ. (19)

Using Maxwell’s equation ∇ · ~B = 0 with this equation gives Laplace’s equation

∇2Φ = 0. (20)

To determine the shape of the transverse field everywhere within the magnet we write

the general expression

By(x, y) = Gy(x) + f(y). (21)

The first term is the field in the y direction as we move along the x axis. The second

term is an unknown function that captures the dependence of the field on the y

coordinate. The potential is then written as

Φ(x, y) =

∫
Bydy = Gy(x)y +

∫
f(y)dy. (22)

Using Laplace’s equation in two dimensions to find f(y) we have

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
=
d2Gy(x)

dx2
z +

df(z)

dz
= 0. (23)
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FIG. 6. Schematic diagram of an ideal dipole (left) and an example of a C-shaped
dipole showing the path of integration used to determine the magnetic field (right).

Rearranging the right hand side and integrating the equation gives the proper ex-

pression for

f(y) = −
∫
d2Gy(x)

dx2
ydy = −1

2

d2Gy(x)

dx2
y2. (24)

Substituting this result into Eq. (25) and integrating one more time yields the general

expression for the two-dimensional potential

Φ(x, y) =

∫
Bydy = Gy(x)y − 1

6

d2Gy(x)

dx2
y3. (25)

By inspecting the individual terms in the multipole expansion of Eq. (15) we

can choose the proper values of Gy(x) and d2Gy(x)/dx2 for a dipole, quadrupole,

sextupole, and octupole. This calulation will not work above octupole since the

Laplacian is no longer exactly zero when d4G/dx4 6= 0.

The field distribution everywhere within the magnet aperture is then calculated

by taking the gradient of the potential. This calculation provides the so-called upright

or normal multipoles with the magnetic fields oriented vertically along the horizontal

centerline. There are also skew multipoles where the magnetic field is horizontal

along the horizontal centerline. These are determined by rotating a dipole by 90◦, a

quadrupole by 45◦, and a sextupole by 30◦ which can be visualized by simply rotating

Figs. 6, 7, and 8 by the prescribed amount.

First we look at a dipole magnet which is shown in Fig. 6. From the multipole

expansion of Eq. (15) we see that the dipole field is constant in the y direction and
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the gradient is zero. Putting this result into Eq. (25) we have

Φ(x, y) = B0y. (26)

The fields come from the derivative of the potential and are given by

Bx(x, y) =
∂

∂x
(B0y) = 0, (27)

By(x, y) =
∂

∂y
(B0y) = B0. (28)

As is shown in the left hand side of Fig. 6, the ideal dipole provides a force in the

midplane which steers the electron beam. CEBAF uses horizontally bending dipoles,

such as shown here, in the Arcs and vertically bending dipoles in the Spreaders and

Recombiners which are just rotated by 90◦.

Looking at the multipole expansion again we see that a quadrupole field is zero

in the center of the magnet and increases linearly as we move along the x axis.

The aperture of a quadrupole is shown schematically in Fig. 7. Using this result in

Eq. (25) we write

Φ(x, y) = gxy, (29)

where g =
dBy

dx
. It follows that the field of a quadrupole is given by

Bx(x, y) =
∂

∂x
(gxy) = gy, (30)

By(x, y) =
∂

∂y
(gxy) = gx. (31)

As is shown in Fig. 7, the fields within a quadrupole focus the beam in one plane

while defocussing the beam in the other plane.

Looking at the multipole expansion we see that a sextupole field is zero in the

center but grows quadratically as we move along the x axis. The fields within the

aperture of a sextupole are shown in Fig. 8. Using this result in Eq. (25) we write

Φ(x, y) =
1

2
g′x2y − 1

6
g′y3 =

g′

2

(
x2y − y3

3

)
, (32)

where g′ = d2By/dx
2. The sextupole fields come once again from the derivatives of

the potential and are given by

Bx(x, y) =
g′

2

∂

∂x

(
x2y − y3

3

)
= g′xy, (33)

By(x, y) =
g′

2

∂

∂y

(
x2y − y3

3

)
=
g′

2!
(x2 − y2). (34)
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FIG. 7. A detailed drawing of the beam aperture of a quadrupole showing the
direction of current flow, the potential for each pole, the field lines within the aperture
and the direction of force for an electron.

Inspecting the octupole term in the multipole expansion we see that the field is zero

at the center and grows cubically as we move along the x axis. It follows that the

potential for a normal octupole is given by

Φ(x, y) =
1

6
g′′x3y − 1

6
g′′xy3 =

g′′

6

(
x3y − xy3

)
, (35)

where g′′ = d3By/dx
3. The resulting magnetic fields are then

Bx(x, y) =
g′′

6

∂

∂x

(
x3y − xy3

)
=
g′′

3!

(
3x2y − y3

)
, (36)

By(x, y) =
g′′

6

∂

∂y

(
x3y − xy3

)
=
g′′

3!

(
x3 − 3xy2

)
. (37)

The functional form of the dipole and quadrupole fields are linear and uncoupled

while the sextupole and octupole fields are nonlinear and coupled.

Finally for this section, we use Ampere’s circuital equation to determine the field

dependence for the three types of magnets as a function of the current in the coils

and the gap between the poles. The integral form of Ampere’s Law is given by∮
~H · d~s = Itotal, (38)
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FIG. 8. A detailed drawing of the beam aperture of a sextupole showing the direction
of current flow, the potential for each pole, the field lines within the aperture and
the direction of force for an electron.

where ~H is the magnetic field and d~s is the differential path around a closed loop

that encircles the total current. For n conductors we can write Itotal = nI. For the

path shown in the dipole schematic of Fig. 6 we have∮
~H · d~s = HFelFe +H0h = nI. (39)

The permeability within the iron, µFe, is related to the permeability of free space,

µ0, by µr = µFe/µ0 which is much greater than 1. It follows that

HFelFe +H0h ≈ H0h = nI. (40)

Using B0 = µ0H0 we obtain the expression for the field of a dipole magnet

B0 =
µ0nI

h
. (41)

The ideal dipole field is constant along the midplane, increases linearly with the total

current nI and is inversely proportional to the gap between the poles h.

Next we consider the quadrupole magnet which is shown in Fig. 10. The path of

integration can be split into three distinct parts. First we have the path within the

steel which has already been shown to be small as compared to the path in the gap.

Second we have the path along the x axis where the field is always perpendicular to

the path where B · ds is zero. Finally we have the segment from the origin to the
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FIG. 9. A detailed drawing of the beam aperture of an octupole showing the direction
of current flow, the potential for each pole, the field lines within the aperture and
the direction of force for an electron.

pole face which is the only part of the integral that contributes to the determination

of the field. Looking at the right side of Fig. 10 we have

H0 =
g

µ0

√
x2 + y2 =

g

µ0

r. (42)

Performing the integral for the only relevant part of the path we have∫ a

0

H0dr =
g

µ0

∫ a

0

rdr =
g

µ0

a2

2
= nI. (43)

The relationship for the gradient is then

g =
2µ0nI

a2
. (44)

Using g = ∂B/∂x and integrating yields the expression for the field

By =
2µ0nIx

a2
. (45)

The ideal quadrupole field depends linearly on the position x in the midplane, scales

linearly with the total current nI and is inversely proportional to the square of the

pole radius a.

Finally we consider the sextupole magnet which is shown in Fig. 11. Once again

the only contribution to the integral is from the origin to the pole tip radius. Using
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FIG. 10. Schematic diagram of a quadrupole (left) and a detailed picture of one
of the poles showing the path of integration used to determine the magnetic field
(right).

the y-component of the field for a sextupole and H0 = B0/µ0 we can write∫ a

0

H0dr =
g′

µ0

∫ a

0

(x2 − y2)dr. (46)

The pole is oriented at 30◦ above the midplane. Substituting this in the above

equation and solving the integral yields∫ a

0

H0dr =
g′

µ0

[∫ a

0

r2 cos2(30◦)dr −
∫ a

0

r2 sin2(30◦)dr

]
, (47)

∫ a

0

H0dr =
g′

2µ0

∫ a

0

r2dr, (48)

g′

6µ0

a3 = nI. (49)

Solving for g′ we have

g′ =
6µ0nI

a3
. (50)

Using g′ = ∂2B/∂x2 and integrating twice yields the expression for the field

By =
3µ0nIx

2

a3
. (51)

The ideal sextupole field depends quadratically on the position x in the midplane,

scales linearly with the total current nI and is inversely proportional to the cube of

the pole radius a.
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FIG. 11. Schematic diagram of a sextupole (left) and a detailed picture of one of the
poles showing the path of integration used to determine the magnetic field (right).

3.2 BEAM OPTICS

In this section the matrix formalism for describing the linear optics of the acceler-

ator is developed. As was shown in Eq. (15) the magnetic field near the beam can be

expanded into a series of multipole strengths with the first two being identified as the

linear optics. The beam is guided along the reference orbit by the dipole fields and

oscillates about that trajectory in response to the restoring forces of the quadrupoles

around the machine. The motion is referred to as betatron oscillations after they

were first observed by Kerst and Serber [5] in an accelerator called the Betatron in

1941. The general equations that form the basis of linear optics are the second-order

differential Hill’s [6] equations. We write them in two dimensions as

x′′(s) +

(
1

R2(s)
− k(s)

)
x(s) =

1

R(s)

∆p

p
, (52)

y′′(s) + k(s)y(s) = 0, (53)

where x and y are the transverse coordinates, s is the longitudinal beam-following

coordinate, R is the radius of curvature within a dipole field, k is the quadrupole

focussing strength and ∆p/p captures the relative error in the beam momentum. The

x-plane was selected as the principal bending plane for this discussion. Considering

the case for ∆p = 0, two-dimensional matrices for quadrupoles, drifts and dipoles in
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the presence of a monochromatic beam can be developed. The general equations are

now homogenous and can be solved analytically. The equations of motion reduce to

x′′(s) +

(
1

R2(s)
− k(s)

)
x(s) = 0, (54)

y′′(s) + k(s)y(s) = 0. (55)

The hard-edge model for transverse magnetic fields of the last section is used in

what follows. In other words, the fields are constant within the magnets and we also

assume that the magnets are absent of any multipole effects higher than quadrupole.

We first solve the equations of motion for quadrupoles. There is no dipole term

and so 1/R = 0 in Eq. (52). The equations of motion are then written as

x′′(s)− k(s)x(s) = 0, (56)

y′′(s) + k(s)y(s) = 0. (57)

For k > 0 we have a quadrupole that defocusses in the x-plane and focusses in the

y-plane. We then solve the equations of motion for the position and angle with the

initial beam conditions x0, y0, x
′
0, and y′0. The resulting equations are

x(s) = x0 cosh
√
ks+

x′0√
k

sinh
√
ks, (58)

x′(s) = x0
√
k sinh

√
ks+ x′0 cosh

√
ks, (59)

y(s) = y0 cos
√
ks+

y′0√
k

sin
√
ks, (60)

y′(s) = y0
√
k sin

√
ks+ y′0 cos

√
ks. (61)

Letting φ =
√
ks and arranging the solution in a matrix form we have


x(s)

x′(s)

y(s)

y′(s)

 =



coshφ
1√
k

sinhφ 0 0

√
k sinhφ coshφ 0 0

0 0 cosφ
1√
k

sinφ

0 0 −
√
k sinφ cosφ




x0

x′0

y0

y′0

 . (62)

For k < 0 we have a quadrupole that focusses in the x-plane and defocusses in the

y-plane. We then solve the equations of motion with the same initial conditions as
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before. The resulting equations are now written as

x(s) = x0 cos
√
|k|s+

x′0√
|k|

sin
√
|k|s, (63)

x′(s) = x0
√
|k| sin

√
|k|s+ x′0 cos

√
|k|s, (64)

y(s) = y0 cosh
√
|k|s+

y′0√
|k|

sinh
√
|k|s, (65)

y′(s) = y0
√
|k| sinh

√
|k|s+ y′0 cosh

√
|k|s. (66)

Assuming now that φ =
√
|k|s the solution in matrix form is


x(s)

x′(s)

y(s)

y′(s)

 =



cosφ
1√
|k|

sinφ 0 0

−
√
|k| sinφ cosφ 0 0

0 0 coshφ
1√
|k|

sinhφ

0 0
√
|k| sinhφ coshφ




x0

x′0

y0

y′0

 . (67)

Next we consider the solution for a field-free region or drift. In this case we have

1/R = 0 and k = 0 and Eqs. (54) and (55) are written as

x′′(s) = 0, (68)

y′′(s) = 0. (69)

These are readily solved to give the equations of motion for a drift:

x(s) = x0 + sx′0, (70)

x′(s) = x′0, (71)

y(s) = y0 + sy′0, (72)

y′(s) = y′0. (73)

The solutions in matrix form for a field-free region are given by
x(s)

x′(s)

y(s)

y′(s)

 =


1 s 0 0

0 1 0 0

0 0 1 s

0 0 0 1




x0

x′0

y0

y′0

 . (74)
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For a pure dipole with no edge focussing we can set k = 0 in Eqs. (54) and (55)

and write

x′′(s) +

(
1

R2(s)

)
x(s) = 0, (75)

y′′(s) = 0. (76)

The solutions for these equations are

x(s) = x0 cos
s

R
+ x′0R sin

s

R
, (77)

x′(s) =
−x0
R

sin
s

R
+ x′0 cos

s

R
, (78)

y(s) = y0 + sy′0, (79)

y′(s) = y′0, (80)

and in matrix form we have

x(s)

x′(s)

y(s)

y′(s)


=



cos
s

R
R sin

s

R
0 0

−R sin
s

R
cos

s

R
0 0

0 0 1 s

0 0 0 1





x0

x′0

y0

y′0


. (81)

These matrices make it easy to track particles through the lattice. Any arbitrary

sequence of linear beamline elements can be represented by a series of transfer ma-

trices. The matrix for the whole beamline is equal to the product of the individual

matrices. For the example in Fig. 12 we have

Mlattice = M1 ·M2 ·M3 ·M4 ·M5 ·M6 ·M7 ·M8 ·M9. (82)

One can construct more realistic magnet models using this formalism. For example

placing a dipole matrix between two focussing matrices provides a dipole with edge

effects. As was shown in section 3.1 the field of a sextupole is coupled in the transverse

plane so linear matrices cannot be used. To account for the complexities of real

magnets and include edge-effects and nonlinearities one must use simulation code.

Two software packages were used in this thesis. For predicting the multipole content

of dipole magnets as a function of the beam trajectory we used the TOSCA package

from Vector-Fields [7] which is described in section 5.3. For tracking particles through
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FIG. 12. An arbitrary sequence of beamline elements.

the lattice we used a program called elegant [8] which is described in section 5.4. The

beam-based measurements and analysis naturally include all of these effects.

3.3 ANALYTICAL MODEL

A simple model of zero-length elements can be used to demonstrate how two

different AC kicker frequencies will propagate and mix across a nonlinear lattice. The

beamline lattice is shown in Fig. 13 and consists of two kicker magnets, a sextupole to

provide the nonlinear forces and a beam position monitor to measure the transverse

location of the beam relative to the reference orbit.

Transfer matrices are used to represent the beamline between the elements of

the model as was shown in section 3.2. The segment between the two AC kickers

is represented by the matrix L, the segment between the second AC kicker and the

FIG. 13. A simple model of beamline elements for demonstrating how two distinct
frequencies of a simultaneously modulated electron beam will mix due to the non-
linear fields of a sextupole.
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sextupole is represented by matrix M and the last segment from the sextupole to the

beam position monitor is represented by matrix N .

Modulation in the horizontal mid-plane for each of the kickers will be assumed for

the development of this simple model. As the beam transports through the system a

subscript for the relevant element is appended to the position and angle to keep track

of where we are in the lattice. The beam position and angle entering any element

will be noted with a minus sign in the subscript while the angle and position leaving

a beamline element will be noted with a plus sign in the subscript.

For beam entering the system a set of initial conditions with zero position and

angle is chosen which gives at the entrance of the first kicker

XK1− = X ′K1− = 0. (83)

An AC modulation with amplitude A1 and frequency ω1 is applied to the first kicker.

Since the elements are assumed to have zero length the position at the exit of the

kicker is unchanged. The AC modulation changes the angle as the beam leaves the

kicker. At the exit of the first kicker we have

XK1+ = 0, (84)

X ′K1+
= A1 cosω1t. (85)

The transfer matrix L is used to transport the beam from the exit of the first kicker

to the entrance of the second kicker. The one dimensional representation is given by(
XK2−

X ′K2−

)
=

(
L11 L12

L21 L22

)(
XK1+

X ′K1+

)
. (86)

Substituting the expression for the position and angle at the kicker exit yields

XK2− = L12A1 cosω1t, (87)

X ′K2− = L22A1 cosω1t. (88)

Now an AC modulation with amplitude A2 and frequency ω2 is applied to the

second kicker. The modulation adds an additional angle as the beam leaves the kicker

but does not affect the beam position within the zero-length element. The position

of the beam at the exit of the second kicker magnet is then given by

XK2+ = L12A1 cosω1t, (89)
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while the angle is given by

X ′K2+
= L22A1 cosω1t+ A2 cosω2t. (90)

The transfer matrix M is used to transport the beam from the exit of the second

kicker to the entrance of the sextupole. The matrix is again written as(
XS−

X ′S−

)
=

(
M11 M12

M21 M22

)(
XK2+

X ′K2+

)
. (91)

Substituting the initial conditions we have the position of the beam at the entrance

of the sextupole given by

XS− = M11L12A1 cosω1t+M12(L22A1 cosω1t+ A2 cosω2t), (92)

XS− = (M11L12 +M12L22)A1 cosω1t+M12A2 cosω2t, (93)

XS− = (ML)12A1 cosω1t+M12A2 cosω2t. (94)

The beam angle at the entrance of the sextupole is given by

X ′S− = M21L12A1 cosω1t+M22(L22A1 cosω1t+ A2 cosω2t), (95)

X ′S− = (M21L12 +M22L22)A1 cosω1t+M22A2 cosω2t), (96)

X ′S− = (ML)22A1 cosω1t+M22A2 cosω2t. (97)

As was shown in section 3.1 the magnetic field for a sextupole in the x and y

plane is given by

Bx(x, y) =
δ2By

δx2
xy, (98)

By(x, y) =
1

2

δ2By

δx2
(x2 − y2). (99)

For the development of this model the beam modulations are restricted to the hori-

zontal midplane. Under these conditions y = 0 and we only need to consider

By(x, 0) =
1

2

δ2By

δx2
(x2) =

g′

2
x2, (100)

where the sextupole gradient from section 3.1 has been used. The position at the exit

of the zero-length sextupole is equal to the position at the entrance while the angle

now has an additional term due to the Lorentz force of the field By which depends
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on the square of the position within the sextupole. The position of the beam at the

exit of the sextupole is given by

XS+ = (ML)12A1 cosω1t+M12A2 cosω2t, (101)

while the angle is given by

X ′S+ = (ML)22A1 cosω1t+M22A2 cosω2t (102)

+
g′

2

[
((ML)12A1)

2 cos2 ω1t

+ 2(ML)12M12A1A2 cosω1t cosω2t

+ (M12A2)
2 cos2 ω1t

]
.

The expression for X ′s+ can be rewritten using the following two trigonometric iden-

tities:

cosA cosB =
1

2
[cos(A+B) + cos(A−B)] , (103)

cos2A =
1

2
[1 + cos 2A] . (104)

The modified expression for the angle of the beam leaving the sextupole is now

written as

X ′S+ = (ML)22A1 cosω1t+M22A2 cosω2t (105)

+
g′

2

[
1
2
((ML)12A1)

2[1 + cos 2ω1t]

+ (ML)12M12A1A2[cos(ω1 + ω2)t+ cos(ω1 − ω2)]

+ 1
2
(M12A2)

2[1 + cos 2ω2t]
]
.

So we see that the angle at the exit of the sextupole carries the fundamental frequen-

cies of ω1 and ω2 as well as the four harmonics of 2ω1, 2ω2, (ω1 + ω2) and (ω1 − ω2).

Finally the transfer matrix N is used to transport the beam from the exit of the

sextupole to the beam position monitor. The matrix is once again written as(
XBPM

X ′BPM

)
=

(
N11 N12

N21 N22

)(
XS+

X ′S+

)
. (106)

The position of the beam at the BPM is written as

XBPM = N11[(ML)12A1 cosω1t+M2
12A2 cosω2t] (107)

+
g′

2
N12

[
1
2
((ML)12A1)

2[1 + cos 2ω1t]

+ (ML)12M12A1A2[cos(ω1 + ω2)t+ cos(ω1 − ω2)]

+ 1
2
(M12A2)

2[1 + cos 2ω2t]
]
,
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TABLE 3. Harmonic sidebands for fundamental frequencies of 1 Hz and 21 Hz.

Magnet Order Harmonic Expression Frequency (Hz)

Sextupole

2ω1 2
2ω2 42

ω1 + ω2 20
ω1 − ω2 22

Octupole

3ω1 3
3ω2 63

ω2 + 2ω1 23
ω2 − 2ω1 19
2ω2 + ω1 43
2ω2 − ω1 41

and the angle is written as

X ′BPM = N21[(ML)12A1 cosω1t+M2
12A2 cosω2t] (108)

+
g′

2
N22

[
1
2
((ML)12A1)

2[1 + cos 2ω1t]

+ (ML)12M12A1A2[cos(ω1 + ω2)t+ cos(ω1 − ω2)]

+ 1
2
(M12A2)

2[1 + cos 2ω2t]
]
.

The amplitude of the primary frequencies and harmonics can now be determined

at the BPM by doing Fourier analysis of the time domain fluctuations of the beam.

This experiment used ω1 = 1 Hz and ω2 = 21 Hz. The different harmonics are shown

in Table 3 for a sextupole as well as what one would expect in the presence of an

octupole magnet’s cubic transverse position dependence.

3.4 CHEBYSHEV FORMALISM

The Chebyshev polynomials and their unique properties were used for the analysis

of the data in this thesis, as they allow one to readily obtain an upper bound on

measurement errors. Its worthwhile to review the most important properties of this

remarkable class of polynomials and to explain how they can be used for precision

modulation measurements such as were conducted in this research.

The defining relationship for deriving Chebyshev polynomials is given by

Tn(cos θ) = cos(nθ). (109)
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Using well known trigonometric identities we can derive the first 5 Chebyshev poly-

nomials. For T0 we have:

T0(cos θ) = cos(0) = 1, (110)

T0(x) = 1. (111)

For T1:

T1(cos θ) = cos(θ), (112)

T1(x) = x. (113)

For T2:

T2(cos θ) = cos(2θ) = cos2 θ − sin2 θ (114)

= cos2 θ − (1− cos2 θ) (115)

= 2 cos2 θ − 1, (116)

T2(x) = 2x2 − 1. (117)

For T3:

T3(cos θ) = cos(3θ) = cos 2θ cos θ − sin 2θ sin θ (118)

= cos 2θ cos θ − 2 sin2 θ cos θ (119)

= (2 cos2 θ − 1) cos θ − 2(1− cos2 θ) cos θ (120)

= 2 cos3 θ − cos θ − 2 cos θ + 2 cos3 θ (121)

= 4 cos3 θ − 3 cos θ, (122)

T3(x) = 4x3 − 3x. (123)

For T4:

T4(cos θ) = cos(4θ) = cos 2θ cos 2θ − sin 2θ sin 2θ (124)

= (2 cos2(θ)− 1)2 − (2 sin θ cos θ)2 (125)

= 4 cos4 θ − 4 cos2 θ + 1− 4 sin2 θ cos2 θ (126)

= 4 cos4 θ − 4 cos2 θ + 1− 4 cos2 θ

(
1− cos 2θ

2

)
(127)

= 4 cos4 θ − 4 cos2 θ + 1− 2 cos2 θ + 2 cos2 θ cos 2θ (128)

= 4 cos4 θ − 6 cos2 θ + 1 + 2 cos2 θ(2 cos2 θ − 1) (129)

= 4 cos4 θ − 6 cos2 θ + 1 + 4 cos4 θ − 2 cos2 θ (130)

= 8 cos4 θ − 8 cos2 θ + 1, (131)

T4(x) = 8x4 − 8x2 + 1. (132)
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TABLE 4. Chebyshev Polynomials from T0(x) through T10(x).

n Tn(x)
0 1
1 x
2 2x2 − 1
3 4x3 − 3x
4 8x4 − 8x2 + 1
5 16x5 − 20x3 + 5
6 32x6 − 48x4 + 18x2 − 1
7 64x7 − 112x5 + 56x3 − 7x
8 128x8 − 256x6 + 160x4 − 32x2 + 1
9 256x9 − 576x7 + 432x5 − 120x3 + 9x
10 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1

The recurrence formula is apparent from the results, follows directly from the

addition formula for cosines and is given by

Tn+1(x) = 2xTn(x)− Tn−1(x) n ≥ 1. (133)

The first 11 Chebyshev polynomials appear in Table 4 [9]. A few general prop-

erties of the Chebyshev polynomials are apparent by examining the table. First, the

leading power of Tn(x) for n ≥ 1 is 2n−1xn. Second, the polynomials include only

even or odd powers of x depending on whether n is even or odd respectively. In other

words the parity of Tn(x) is (−1)n. Third, the polynomials are all normalized so that

Tn(1) = 1. By the parity argument, Tn(−1) = (−1)n.

The following properties of the general Chebyshev polynomial can be verified by

inspection for the cases plotted in Fig. 14. First, there are n zeros for the polynomial

Tn(x) and they are all contained in the domain [-1,1]. From the defining relation

shown in Eq. (109), the zeros of the polynomial are given by

xi = cos

[
(2i− 1)π

2n

]
i = 1, 2, . . . , n. (134)

Second, the polynomial achieves the values ±1, n + 1 times, at x values inside the

closed interval [-1,1]. Third, the derivative dTn/dx has n − 1 zeros interleaved with

the zeros of the polynomial itself. At each of these zeros the value of the polynomial

is ±1 and the sign of the value changes for each succeeding zero. Fourth, and most
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FIG. 14. A plot of Chebyshev polynomials T1(x) through T5(x).

important for error estimation, |Tn(x)| ≤ 1 for all x ∈ [−1, 1]. The shape of the

polynomial is said to have the equal-ripple property [10], or in other words, the

polynomial makes ripples of equal amplitude throughout the domain [-1,1].

It should be noted that some authors [11] use the alternate normalization

Tn(x)/2n−1 for the nth order Chebyshev polynomial. This has the benefit that the

leading power of the polynomial is always one. In this thesis this normalization is

not used.

Now suppose one desired to measure a real-valued function f(x) whose domain

is [-1,1] and that, after measuring the function, one would like to represent this same

function by a polynomial. A natural choice for problems of this type is to use the

McLaurin-Taylor power series expansion of the function given by

f(x) = f(0) +
df

dx

∣∣∣∣
0

x

1!
+
d2f

dx2

∣∣∣∣
0

x2

2!
+ · · ·+ dnf

dxn

∣∣∣∣
0

xn

n!
+ · · · . (135)
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In addition to the general problem of taking derivatives numerically, this represen-

tation involves values of the function only near x = 0. When the series is truncated

at a finite polynomial order N , the neglected terms may be quite small for values of

x near 0 but there is no guarantee that the representation will provide an accurate

value as x→ ±1.

One solution to this deficiency is to have the polynomial representation include

information about the function throughout the entire domain. A way to include

this information, analogous to eigenfunction expansions in quantum mechanics, is

to expand the function in modes given by sets of orthogonal polynomials. In order

to pursue this line of reasoning one needs to have a way of quantifying the residual

error between the function and the polynomial representation of the function. This

task may be accomplished by defining suitable function-space norms. A frequently

used method in statistical analysis is to require a minimum least squares error. The

least squares norm of a function g(x) is defined to be∥∥∥∥g(x)

∥∥∥∥
ls

≡
[∫ 1

−1
g2(x)dx

]1/2
. (136)

Using this norm, the least squares error between a function f(x) and a general nth

order polynomial representation of the function is

error2 =

∥∥∥∥f(x)−
N∑
i=0

aipi(x)

∥∥∥∥
2

ls

=

∫ −1
−1

(
f(x)−

N∑
i=0

aipi(x)

)2

dx, (137)

where ai are the polynomial expansion coefficients to be minimized and pi represent

the general set of polynomials.

Examining Eq. (137), it is apparent that the integral may be effectively integrated

when the polynomial set is orthogonal in the norm. From elementary quantum

mechanics [12] it is known that the Legendre polynomial set

P0(x) = 1 Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)

n
(138)

is orthogonal on the domain [-1,1]. The orthogonality relationship is given by∥∥∥∥Pm(x)Pn(x)

∥∥∥∥2
ls

=
2

2n+ 1
δmn, (139)

where δmn is the Kronecker delta, defined to be 1 when m = n and 0 otherwise. The

expression for the square of the least-squares error becomes

error2 =

∫ 1

−1
f 2(x)dx− 2

N∑
i=0

ai

∫ 1

−1
f(x)Pi(x)dx+

N∑
i=0

2a2i
2i+ 1

. (140)
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The error is minimum when the ai are set using the overlap integral

ai =
2i+ 1

2

∫ 1

−1
f(x)Pi(x)dx =

∥∥∥∥f(x)Pi(x)

∥∥∥∥2
ls∥∥∥∥P 2

i (x)

∥∥∥∥2
ls

. (141)

The mean-square error between the function and its polynomial representation is

minimized by setting the expansion coefficient to the value given by the orthonormal

projection of the function onto the complete set Pi(x).

Because |Pn(x)| ≤ 1 for all x in the domain [-1,1], substantial progress has been

made in bounding the error of a finite polynomial expansion, as compared to a finite

McLaurin-Taylor power series expansion. The absolute error of the neglected terms

cannot exceed
∞∑

i=n+1

ai (142)

throughout the domain. When representations of analytical functions by such ex-

pansions are made, it is possible to estimate the infinite sum either numerically or

analytically, providing an absolute bound on the neglected terms.

A related result which has a parallel for Chebyshev expansions, is that of all the

polynomials with leading term xn, the polynomial with the smallest least-squares

norm is the one proportional to Pn(x) [13]. To see this result, note that any polyno-

mial with leading term xn may be written as
∑n

i=0 aiPi(x) for some real coefficients

ai. The square of the norm is∥∥∥∥ n∑
i=0

aiPi(x)
n∑
j=0

ajPj(x)

∥∥∥∥2
ls

=
n−1∑
i=0

2a2i
2i+ 1

+
2a2n

2n+ 1
. (143)

The coefficient an must be chosen to give the leading term xn. With this choice the

minimum least-square norm occurs when ai = 0 for i = 1, · · · , n− 1.

This technique can be used to determine the function f(x) by sampling points

of the domain at uniformly spaced intervals and numerically computing the overlap

integral to obtain the coefficients of the expansion. If the ai fall off fast enough with

increasing n the expansion can be obtained and an upper bound on the error can be

found.

Another alternative is to employ a measurement technique that can naturally

bound the error due to the neglected terms. Consider that the points of the domain
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FIG. 15. The plot at the left shows an arbitrary function to fit three points using a
cosine expansion. The plot at the right shows harmonic lines from the expansion.

are modulated at a certain frequency (ω/2π) as in Fig. 15 for example. The values of

the modulated function f(cosωt) can be represented by a Fourier cosine expansion

f(cosωt) = f0 +
∞∑
i=1

fi cos(iωt). (144)

Using the standard results from Fourier theory the expansion coefficients are

fi =
2

τ(1 + δi0)

∫ τ

0

f(cosωt) cos(iωt)dt. (145)

Now when the function to be measured is expanded in Chebyshev polynomials

f(x) =
∞∑
i=0

aiTi(x), (146)

the defining relation for the Chebyshev polynomials Tn(cos θ) = cos(nθ) and the

usual orthogonality of the Fourier cosine expansion yields ai = fi.

The process for measuring the function expansion in Chebyshev modes is:

1. Modulate the input of the function to be measured at a certain frequency ω.

2. Detect the output of the modulation.

3. Fourier (cosine) transform the measured output.

4. Read out the expansion of the function as Chebyshev polynomials.
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The function may be highly nonlinear; the Chebyshev expansion will directly

quantify the magnitude of the nonlinearity. Also note, that by the orthogonality

of the Fourier series, single harmonics in the Fourier spectrum are unambiguously

coupled to single Chebyshev polynomials. Response at the ith harmonic gives directly

the amplitude of Ti(x) in the function expansion and the absence of a response at

the ith harmonic means that there is no Ti(x) in the function expansion. Therefore,

because the Chebyshev polynomials are bounded, the noise floor of the measured

spectrum gives the maximum error possible for the measured value of the function

as in the Legendre expansion above.

Two things must be considered when using this technique. First, there cannot be

any significant phase delay between the modulation and the detection of the modu-

lation. In the work reported here this is guaranteed because the beam transit time

between the kickers and the BPMs is a few hundred nanoseconds which is far shorter

then the modulation period. Second, to use the correspondence between Fourier and

Chebyshev expansion coefficients accurately the value of the corresponding peaks of

the spectrum must be determined accurately. Use of the NAFF [14] algorithm in

this research maximizes the precision of the peak detection.

This method of using Fourier analysis to obtain Chebyshev expansions may be

extended to two dimensions which is applicable for this thesis. For an arbitrary

two-dimensional function

f(x, y) =
∞∑
m=0

∞∑
n=0

amnTm(x)Tn(y) (147)

the expansion coefficients may be found using simultaneous beam modulations at

two distinct frequencies with the coefficients given by

amn =
4

(1 + δm0)(1 + δn0)τ

∫ τ

0

f(cosω1t, cosω2t) cos(mω1t) cos(nω2t)dt. (148)

Its important for the two frequencies to be incommensurate for the lowest har-

monic modes so that the identification of the spectral peaks is unambiguous. Some

separation between the two frequencies is also desirable so that the sidebands don’t

overlap. The 1 Hz and 21 Hz frequencies used in this experiment are incommensurate

as can be seen in Table 3.

The final generalization is to include arbitrary functions that are not centered at

zero on average. If the modulation is over the closed two dimensional region defined

by (x, y) ∈ [x0 − xm, x0 + xm] × [y0 − ym, y0 + ym] where [x0, y0] is the center of the
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modulation and [xm, ym] are the modulation amplitudes, then the expansion function

is

f(x, y) =
∞∑
m=0

∞∑
n=0

amnTm

(
x− x0
xm

)
Tn

(
y − y0
ym

)
. (149)

The expansion coefficients are then given by

amn =
4

(1 + δm0)(1 + δn0)τ
× (150)∫ τ

0

f((x0 + xm) cosω1t, (y0 + ym) cosω2t) cos(mω1t) cos(nω2t)dt.

An additional benefit of Chebyshev expansions is that they tend to converge very

rapidly requiring fewer terms to reach the desired residue. For this reason Chebyshev

polynomials are most frequently used for high-precision numerical modeling and for

developing numerically efficient routines for the computation of functions.

The equal ripple property of Chebyshev polynomials provide an excellent starting

point for solving the general problem of approximating a function with the minimum

maximum error (minimax). Here the function space norm quantifying the error is

the uniform or supremum norm given by

‖f‖u = sup
−1≤x≤1

|f(x)|. (151)

As proved by Chebyshev, of all of the polynomials with leading term xn, the poly-

nomial with the smallest uniform norm is τn(x) = Tn(x)/2n−1 [15]. Another related

result is that the best minimax approximation to the function xn by a polynomial of

degree no greater than n− 1 is given by xn − τn(x) [16].
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CHAPTER 4

EXPERIMENTAL EQUIPMENT

In this chapter the experimental equipment that was used to conduct this research is

described in detail. A schematic representation of the overall hardware configuration

is shown in Fig. 16.

At the lower left are the four kicker magnets for modulating the beam. Each

magnet is connected to an independent current source, referred to as a trim card,

in the above ground service building. A pair of function generators are used to

provide the 1 Hz and 21 Hz AC voltages which are used to modulate the current

delivered to the magnets on the beamline. The AC voltage is also connected to the

data acquisition system. The design, fabrication, measurement, and operation of the

magnets will be discussed in section 4.1.

At the left are the 4-antenna Beam Position Monitors used to measure the mod-

ulation of the electron beam. Each of the eight monitors are connected to an RF

module through a switching multiplexer. The multiplexer sequences through the dif-

ferent passes during normal operations. For this experiment the switches were fixed

to the particular beamline under test. The signals from the RF module are connected

to an IF module and a high speed data acquisition system, the former being part of

the nominal BPM system and the latter designed for this research. The BPM system

beamline components as well as the electronics are described in section 4.2.

The control room computer was used to display the BPM signals during the

initial beam setup, to control the BPM calibration, and to switch the multiplexer.

The electron beam macropulse structure was also controlled from the console and

will be described in section 4.3.

At the upper right is the data acquisition system which records signals from all

32 BPM antennae as well as the two AC sources. The system is triggered by a beam

synchronization pulse from the electron gun control system. Section 4.4 provides an

overview of the Data Acquisition System and describes the sampling scheme that

was used to record the 1 MHz signal of the RF module and the 1 Hz and 21 Hz

signals from the function generators.
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FIG. 16. A schematic representation of the experiment.

4.1 AIR-CORE KICKER MAGNETS

Transverse modulation of the beam orbit for this experiment was provided by

eight separate individually controlled kicker magnets. The four magnets in the Arc 1

beamline were originally installed in 1998 as part of a machine optics characterization

scheme called the 30 Hz System. A photograph of a pair of these 8” long magnets

designated as MAZ1E01H and MAZ1E01V is shown at the top of Fig. 17. The pairs

of coils for each magnet are mounted to the 3” diameter beam tube with plastic tie

wraps.

The four magnets for the BSY Recombiner study were specifically designed, built

and tested for this research. A photograph of a pair of these 14” long magnets

designated as MAK6T04H and MAK6T04V is shown at the bottom of Fig. 17. The

pairs of coils for each magnet are mounted in an aluminum holder with a stainless

steel band clamp to secure them to the 3” beam tube. The precision machining of the

holder allows for better control of the relative coil alignment and overall orientation
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FIG. 17. A picture showing two of the 8” long 60-turn kicker magnets in Arc 1 at
the top and two of the 14” long 150-turn kicker magnets in the Arc 6 Recombiner at
the bottom.

and position of the kicker assembly.

The selection of a design for the MAK kicker magnets was guided by the re-

quirements for the experiment and by any physical constraints of the system. To

adequately explore the fields of the lattice with this technique one needs to modulate

the beam across a significant portion of the physical aperture of the beamline. As

was shown in section 3.1 the angle for a dipole magnet is given by

∆θ(rad) = 2.9979× 10−4
B0(G)L(cm)

pz(MeV/c)
. (152)

So for a given momentum pz we need to find the right combination of central field
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FIG. 18. The coordinate system for determining the magnetic field a distance R from
a long straight wire carrying a current I.

B0 and effective length L. In section 3.1 we found that the central field of a dipole

scales according to B0 = µ0nI/h. The gap h is constrained by the physical size of

the beam tube. The number of turns is constrained by the need to keep the current

density low enough to prevent the magnets from overheating from ohmic losses. The

effective length is limited by the amount of space on the beamline but also by the

need to keep the coils as straight as possible along the beam axis. The optimum

design needs to strike a balance among all of these competing constraints.

A good estimate of the central field for a kicker magnet can be made using the

Law of Biot-Savart and the assumption that the total current for the coil bundle is

concentrated at the center. The coordinate system used for what follows is shown in

Fig. 18. The integral form of the Biot-Savart relation is given by

~B =
µ0I

4π

∫
d~l × ~r
r2

. (153)

For an infinitely long wire we have the familiar result

B0 =
µ0It
2πR

. (154)

A cross-sectional view of the kicker assembly is shown in Fig. 19. The distance R

from the center of the coil to the origin is 4.85 cm and It = 150 amp-turns for the

MAK kicker design. Putting this into the equation for B0 provides an estimate of

the central field. Numerically we have

B0 =
4π × 10−7(Tm/A) · 150

2π · 4.85× 10−2(m)
= 6.185× 10−4 T/A = 6.185 G/A. (155)
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FIG. 19. A cross-sectional view of an MAK magnet showing the field vectors for each
of the four current sources and the resultant vertical field.

The field vector for each of the four coil assemblies is shown in Fig. 19. Symmetry

guarantees that the field in the x-direction is zero. The angle θ is nominally 30◦

giving a total central field along the vertical axis of

Bt = 4 ·B0 cos(θ) = 4 · 6.185 G/A · cos(30◦) = 21.08 G/A. (156)

The nominal length for the coils is 14” or 35.56 cm. This gives an estimate of the

integral field strength of 21.08 G/A × 35.56 cm = 749.60 G-cm/A.

The coils are made from 17 AWG kapton coated magnet wire using the winding

fixture shown in Fig. 20. The wire is wound under tension into 15 layers of 10 carefully

stacked turns for 150 total turns. The ends of the coil assemblies are bent up at an

angle of 30◦ to allow them to fit around the beam tube and to minimize multipole

errors at the ends of the magnets. The coils are then dipped in a high temperature

epoxy called HYSOL R© and baked in an oven for three hours. A drawing of the coil

assemblies is shown in Fig. 21.
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FIG. 20. A picture of the winding fixture that was used to make the coils.

FIG. 21. A drawing of the coil design for the 150 turn MAK kicker magnets that
were used in Arc 6. An elevation view (top) and plan view (bottom) is presented.
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FIG. 22. A drawing of the aluminium clamp for mounting the correctors on the 3”
beam tube. At left is a downstream view and shows the coils in the mount. At right
is an edge view to show the channel for the stainless steel band clamp.

An aluminum clamp was designed to hold the pair of coils in the proper orientation

and to mount them around the 3” diameter beam tube. Two clamps were used for

each coil pair and were secured using stainless steel band clamps. A flat section was

machined on the round clamp for leveling the completed assembly on the beam tube.

A drawing of the clamp is shown in Fig. 22.

The magnet wire has a temperature limit of 200◦ C. A test of a completed magnet

assembly was performed in the lab to verify that it did not exceed this temperature

rating. The test was done with 5 A of DC current for over four hours to allow the

temperature to come to equilibrium. The peak temperature was around 80◦ C which

is well below the limit. The results are shown in Fig. 23.

Both the MAZ and MAK kicker magnets were measured for field quality before

they were installed on the beamline. The integrated dipole strength along the mid-

plane was measured at several DC currents to develop a map of magnetic field versus

excitation current for use in the control of the magnets. At each current the field is

measured with a Hall Probe starting well outside the magnet where only the earth’s
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FIG. 23. A graph of temperature data for a coil pair operating at 5 Amps DC current.

field is present. The probe is stepped along a straight line through the magnet and

out the other side in 0.5 cm increments until once again only the earth’s field is

evident. The field measurements at each point are added and then multiplied with

the total length of the path through the magnet. The data for the MAZ magnet is

from the CEBAF database and includes a single track along the longitudinal z axis

at x = y = 0. The data for the MAK magnets was also taken using a Hall probe but

this time along thirteen different tracks in the y = 0 midplane from x = −3 cm to

x = +3 cm in 0.5 cm increments. The field map along x = y = 0 is shown for each

magnet type in Fig. 24. The earlier estimate of the integrated field strength of the

MAK magnet was 749.60 G-cm/A. The value from the lab measurement was 745.42

G-cm/A which is within 2% of the estimate. All of the magnet measurement data

is corrected for the earth’s field which is on order 0.5 G. The generalized coordinate

system for resolving the field into components is shown in Fig. 25. The data [17]

for the earth’s field at the location of the Magnet Measurement Facility is shown in

Table 5.

The thirteen individual tracks of Hall probe data for the MAK magnet is shown

in Fig. 26. The plots show the quality of the left-right symmetry of the field. The
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FIG. 24. Field map graphs for the MAZ magnet at the top and the MAK magnet at
the bottom. Both data are integrated along z at x = y = 0.
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FIG. 25. The generalized coordinate system for describing the earth’s field.

TABLE 5. The Earth’s magnetic field at Jefferson Lab.

Parameter Value Unit
Declination -10.71402 deg
Inclination 64.63293 deg
North-South Component 214.0066 mG
East-West Component -404.912 mG
Horizontal Component 217.7954 mG
Vertical Component 459.3534 mG
Earth’s Field 508.3738 mG
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FIG. 26. A graph of the magnetic field versus the longitudinal position for the MAK
magnet showing all thirteen tracks. The box represents the length of the magnet.

actual corrector length is represented by the rectangle to show how the edge effects

are related to the real magnet. Figure 27 shows the integrated field strength versus

the transverse position in the midplane of the magnet. The data are normalized to

the central trajectory and show reasonable flatness out to about 1 cm.

In this experiment the beam modulation of the first kicker magnet can result in a

large transverse position offset in the second kicker magnet which is simultaneously

modulating. Its important to try and minimize the multipole content of the kickers

themselves so that their nonlinearity doesn’t significantly add to that of the lattice

being investigated. Bench measurements of the harmonic content of both the MAZ

and MAK magnets were conducted using a rotating coil system.

A rectangular loop of wire is printed onto a circuit board, mounted onto a rota-

tional mechanism and then spun inside the magnet at a low frequency. The outer

edge of the coil is located a fixed distance from the axis of rotation which is called

the reference radius. The time rate of change of the magnetic flux induces a voltage

in the loop which is then recorded. Fourier decomposition of the signal is used to

analyze the data and determine the strength of each harmonic relative to the n = 1
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FIG. 27. A graph of the integrated field strength versus the transverse position in
the midplane. The data is normalized to the track at x = y = 0.

dipole term.

The voltage generated in a rotating loop of wire at radius r with the return on

the axis of rotation is given by

V = −dΦ

dt
, (157)

where Φ is the total flux in the loop. The total flux can also be written as

Φ = Leff

∫
B(s)ds. (158)

For each harmonic number the induced voltage is related to the field strength by∫
V (n)dt = −Leff

∫
B(n)ds. (159)

The calculated results for the nth harmonic at the reference radius can be scaled to

any radius using

Rn
new = Rn

ref

[
rnew
rref

]n−1
. (160)

The results for the MAZ and MAK magnets at a radius of 1 cm and 0.5 cm

is shown in Figs. 28 and 29 respectively. Beyond n = 9 the harmonic strength was
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FIG. 28. Harmonic content of MAZ kicker for 1.0 cm radius at the top and 0.5 cm
radius at the bottom.
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FIG. 29. Harmonic content of MAK kicker for 1.0 cm radius at the top and 0.5 cm
radius at the bottom.
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FIG. 30. A schematic of the trim magnet system.

vanishingly small for both magnet types. The MAK magnet has better results overall

due to the uniformity and precision mounting of the coils.

The hundreds of quadrupole, sextupole, and orbit correction magnets around the

accelerator are controlled with what is referred to as the Trim Magnet System. A

schematic representation is shown in Fig. 30. Each equipment rack in the service

building contains thirty-two trim cards that are independently controlled across a

serial network from the control room. The digital to analog converter (DAC) is

housed within an isothermal regulator module to provide precision control of the

magnet current. The DAC is connected to a shunting preamplifier to control the

current. The racks are equipped with a positive and negative polarity power supply

operating at 30 V which source the current for the trim cards within that rack.

The cards for this experiment are specially modified to take their setpoint from an

external input. The DAC output within the regulator module was disconnected from

the control circuit and replaced by the external input. An HP function generator was

then connected to the input through a patch panel to control the current set point

for each of the kicker magnets. The signal sent to the trim card was also sent to

the data acquisition system to be synchronously sampled with the BPM data. The
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output from the shunting preamplifier, which scales with the current returning from

the magnet was also sent to the data acquisition system.

4.2 BEAM POSITION MONITORS

The CEBAF accelerator is a highly instrumented machine with over 600 Beam

Position Monitors distributed throughout the 6.7 km of beamline. In this thesis two

distinct types of 1/4 wave antenna-style BPMs [18, 19] are used, which are designated

M20 and M15. A drawing for each type of BPM can is shown in Fig. 31. The larger

M20 is used in Arc 1, Arc 2, and the Extraction region of the accelerator with the

smaller M15 can used elsewhere.

The 1497 MHz micropulse structure of the electron beam creates an electric field

which couples to the 1/4 wave antennas within the BPM can. An electrical schematic

is shown in Fig. 32 for illustration. The beam position is proportional to the difference

divided by the sum of the induced voltages on the antennae which is given by

r ∝ V + − V −

V + + V −
=

∆

Σ
. (161)

For a perfectly centered beam the voltage for each channel is the same which corre-

sponds to r = 0. A beam that is offset from the central trajectory will result in an

imbalance between the two signals. While the sum of the signals remains the same

we now have a nonzero difference signal which is interpreted as a position offset.

The proportionality constant k depends on the can geometry. For the M15 BPM

k = 18.86 mm and for the M20 BPM k = 25.56 mm. A constant α is introduced to

account for any mechanical or electrical mismatch between the two channels. The

relation for r is now given by

r = k
V + − αV −

V + + αV −
. (162)

The BPM has two opposing pairs of antennae designated X+, X−, Y +, Y − that

are oriented 45◦ to the lab frame. This is to prevent synchrotron light, emitted from

the beam in the horizontal or vertical bend plane, from striking the antennas. To

find αy an RF calibration signal is applied to the X− antenna in the absence of beam.

Taking the ratio of Y + − Y +
off to Y − − Y −off , where the offset signals are recorded

with the beam and calibration source off, provides the value for αY . To find αX the

same procedure is used but this time the RF calibration signal is applied to the Y −
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FIG. 31. Schematic drawing of an M20 BPM at the top and an M15 BPM at the
bottom.

antenna. The expression for the two constants is given by

αx =
X+ −X+

off

X− −X−off
, (163)

αy =
Y + − Y +

off

Y − − Y −off
. (164)

An example calibration run is shown in Fig. 33. When the Y − calibration signal is on

we see that the X+ and X− signals are nearly equal while the Y + signal is weakest

since its furthest from the calibration source. When the calibration signal is off we

see that all four offset signals are just a few hundred counts.

The X and Y position of the beam in the rotated frame is then fully determined

and designated Xrot and Yrot with the two equations written as

Xrot = k

(
X+ −X+

off

)
− αx

(
X− −X−off

)(
X+ −X+

off

)
+ αx

(
X− −X−off

) , (165)
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FIG. 32. An electrical schematic for a CEBAF Beam Position Monitor. The elec-
tron beam creates a transverse electromagnetic field that couples to the V + and V −

antennae. The measured position will depend on the difference in antenna voltages.

Yrot = k

(
Y + − Y +

off

)
− αy

(
Y − − Y −off

)(
Y + − Y +

off

)
+ αy

(
Y − − Y −off

) . (166)

The beam position in the lab frame is then determined by a simple coordinate

rotation by 45◦ given by

X =
1√
2

(Xrot − Yrot) , (167)

Y =
1√
2

(Xrot + Yrot) . (168)

The error in our knowledge of alpha can be determined from the standard rules

for error propagation. When adding or subtracting two arbitrary signals A and B

the error is given by

∆R =

√
(∆A)2 + (∆B)2. (169)

When multiplying or dividing two arbitrary signals A and B the error is given by

∆R = R

√(
∆A

A

)2

+

(
∆B

B

)2

. (170)



57

FIG. 33. A plot of four BPM wire signals during the alpha calibration procedure.

Using the RMS value of the wire signals with the calibration oscillators on and

with the calibration oscillators off and then applying the above rules we can determine

the relative error in αx and αy. The error equations are then given by

∆αx
αx

=

√√√√(∆X+)2 +
(
∆X+

off

)2(
X+ −X+

off

)2 +
(∆X−)2 +

(
∆X−off

)2(
X− −X−off

)2 , (171)

∆αy
αy

=

√√√√(∆Y +)2 +
(
∆Y +

off

)2(
Y + − Y +

off

)2 +
(∆Y −)2 +

(
∆Y −off

)2(
Y − − Y −off

)2 . (172)

For this thesis there were eight BPMs in the Arc 1 beamline and eight BPMs

in the Arc 6 Recombiner beamline that were included in the experiment. The cal-

ibration data for all sixteen BPMs is captured in the next three tables. The data

for calibration oscillators ON along with the RMS errors for the sixty-four antennae

is shown in Table 6. The data for calibration oscillators OFF along with the RMS

errors for the sixty-four antennae is shown in Table 7. And finally the error in αx

and αy for all thirty-two pairs of antennae is shown in Table 8.

A block diagram of the electronics is shown in Fig. 34. A single electron source of
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FIG. 34. A schematic layout of the BPM Electronics.

TABLE 6. BPM Wire Data with Calibration Oscillators On

BPM Name X+ X− Y + Y −

IPM1A10 11799±48 8939±26 10872±32 9147±61
IPM1A11 8395±33 8834±33 8170±47 8255±39
IPM1A13 7792±41 7459±28 8142±31 9299±31
IPM1A14 5668±56 6719±40 4713±39 6571±29
IPM1A16 6591±38 6264±26 5244±30 5932±24
IPM1A18 5286±30 5243±29 4905±26 4639±21
IPM1A19 3177±19 3135±18 3644±41 4246±24
IPM1A21 5105±26 5107±27 5312±27 5241±37
IPM6T00B 6504±45 6280±30 5628±27 5623±48
IPM6T01 4196±34 4913±37 4714±57 4357±37
IPM6T03 9133±44 8628±26 8513±26 7946±25
IPM6T06 9888±59 9020±42 7718±41 7558±35
IPM6T07 5428±55 5488±25 5670±32 6095±27
IPM6T08 4555±31 3933±25 3996±24 4271±23
IPM6T09 4059±19 3831±26 3947±53 3531±23
IPM6T09A 4511±28 4993±28 4967±31 4679±41
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TABLE 7. BPM Wire Data with Calibration Oscillators Off

BPM Name X+
off X−off Y +

off Y −off
IPM1A10 797±28 210±14 471±21 745±60
IPM1A11 319±16 459±16 480±57 459±31
IPM1A13 614±55 390±37 378±23 403±17
IPM1A14 676±68 431±25 497±27 252±13
IPM1A16 484±13 224±28 356±15 278±36
IPM1A18 355±18 494±13 503±45 275±15
IPM1A19 376±26 260±20 1156±29 532±31
IPM1A21 230±13 426±20 278±19 629±19
IPM6T00B 630±27 338±18 264±17 617±40
IPM6T01 403±26 387±20 690±73 429±34
IPM6T03 675±51 305±21 274±25 221±13
IPM6T06 594±33 537±23 413±49 419±22
IPM6T07 736±22 192±86 381±31 268±17
IPM6T08 335±19 301±28 262±18 231±11
IPM6T09 309±21 451±39 869±24 346±25
IPM6T09A 233±21 291±15 353±19 614±19

TABLE 8. Table of α data for all sixteen BPMs.

BPM Name αx αy
IPM1A10 1.263±0.008 1.222±0.014
IPM1A11 0.964±0.006 0.989±0.012
IPM1A13 1.017±0.012 0.865±0.006
IPM1A14 0.791±0.015 0.663±0.008
IPM1A16 1.019±0.009 0.871±0.010
IPM1A18 1.047±0.010 1.013±0.013
IPM1A19 0.992±0.015 0.680±0.016
IPM1A21 1.044±0.009 1.069±0.012
IPM6T00B 0.999±0.011 1.031±0.015
IPM6T01 0.844±0.012 1.069±0.027
IPM6T03 1.026±0.009 1.070±0.006
IPM6T06 1.099±0.010 1.018±0.011
IPM6T07 0.874±0.019 0.903±0.009
IPM6T08 1.171±0.016 0.920±0.010
IPM6T09 1.089±0.017 0.963±0.021
IPM6T09A 0.916±0.010 1.138±0.015
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the three laser injector system was used for this experiment which provides beam at

499 MHz. A multiplexer sequentially switches five BPMs, each one from a particular

pass, to the RF Module located adjacent to the beamline. The RF Module is a

4-channel amplifier that down-converts the RF signal from the BPM to 1 MHz to

reduce the transmission loss in the long signal cables that are connected to the patch

panel in the above ground Service Building. The RF Module also includes a 2-channel

RF calibration source used for determining αx and αy.

The signals are connected from the Patch Panel to the IF Module which resolves

the 1 MHz signal to a DC level. The signal is then digitized and sent over the network

for control room display. The IF module is triggered to acquire data at 60 Hz for

typical beam operations. For this thesis the IF module is replaced with a high speed

digital data acquisition system which is described in section 4.4.

4.3 BEAM MACROPULSE STRUCTURE

The CEBAF electron beam for a single laser consists of a 499 MHz Continuous

Wave of electrons. The average power in this CW beam is simply the average current

times the voltage gained through acceleration P(W)=I(µA)×V(MV). The accelerator

is classified as a Mega-Watt beam facility and reached this milestone in 1996 with a

1497 MHz, 200 µA, 4 GeV beam as was shown in Table 2. During machine tuning,

and beam modulation experiments such as this, the total power must be limited to

prevent the beam from melting through the stainless steel beam tube at any location

of beam loss.

To have an acceptable signal:noise ratio for the BPM system, a reasonable mini-

mum threshold current is around 10 µA. This gives 10 W/MeV which is still too high

for the typical energies of the machine. The duty factor of the beam must be reduced

to lower the average power. The nominal tuning beam has the pulse structure shown

at the top in Fig. 35 and consists of a 60 Hz train of 250 µs macropulses with an

average current of 10 µA within the macropulse. Beyond the main macropulse is a

4 µs long trailing pulse used by the linac BPMs to detect the time of flight separated

signals of the different passes within the linac. The duty factor for this configuration

is 1.5%.

The pulse structure chosen for the modulation experiment is shown at the bottom

in Fig. 35 and consists of a 500 Hz train of 100 µs macropulses with an average current

of 10 µA within the macropulse. The duty factor for this configuration is 5%. This
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FIG. 35. The beam pulse structure used for tuning the machine is shown at the top.
The beam pulse structure during modulation experiments is shown at the bottom.

particular pulse structure was selected for the following reasons:

1. The dominant noise source affecting the beam comes from 60 Hz power supply

fluctuations. These are significant out to the 4th harmonic or 240 Hz. To keep

track of these errors the sample rate has to be at least twice this frequency or

480 Hz per the Nyquist theorem.

2. The insertable beam dumps in the accelerator have a power limit of 2 kW. For

the energies used in this experiment this corresponds to 311 W and 1711 W in

Arc 1 and the Arc 6 Recombiner respectively.

3. The signal to noise ratio and the ability to resolve the peaks in the BPM

spectrum are improved with more samples.

4. The data acquisition system uses I-Q sampling (described in section 4.4) to

obtain the beam position from the down converted 1 MHz BPM signals. Within

the 100 µs macropulse there are then a hundred 1 MHz cycles that can be

averaged to improve the data quality.
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4.4 DATA ACQUISITION SYSTEM HARDWARE

The data acquisition system used in this thesis was initially developed as a pro-

totype system for detecting fast transients in the linac RF during beam trips [20].

This Distributed Data Acquisition System (DDA) is a modular design consisting of a

main motherboard using an embedded IOC based on the PC/104 architecture. The

computer runs EPICS (Experimental Physics and Industrial Control System) on top

of RTEMS (Real-Time Executive for Multiprocessor Systems) software. This single

board computer can take up to five data acquisition modules that are each capable of

receiving twelve channels. A picture of the prototype installed in the service building

during the experiment is shown in Fig. 36. This experiment used three of the data

acquisition modules, visible along the front of the chassis, for a total of thirty-six

inputs. The BPM patch panel is also visible in the photo at the lower right side. On

top of the chassis is a multi-output DC source for powering the system.

FIG. 36. A picture of the data acquisition system in the service building.
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FIG. 37. A picture of one of the four data acquisition circuit boards.

The first thirty-two channels were used for the 1 MHz RF signals from the eight

4-wire BPMs. The BPM patch panel can been seen at the lower right in the photo.

The last four channels were used to record the 1 Hz and 21 Hz signals from the four

kicker magnets. A picture of one of the boards is shown in Fig. 37. The twelve

ADCs can be seen along the top of the board with a Field Programmable Gated

Array (FPGA) and memory registers at the bottom right.

A schematic representation of the ADC data flow is shown in Fig. 38. The

thirty-two 1 MHz signals from the BPM system were AC coupled to a buffering

amplifier with a 1.2 MHz bandwidth and an expected input voltage of ±1 V. The

two 1 Hz and two 21 Hz signals from the kicker magnets were also AC coupled to

FIG. 38. A schematic representation of the data flow through an ADC board.
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FIG. 39. I-Q sampling as a function of time shown at the right. A phasor diagram
showing the same sampling is shown at the left.

the buffering amplifier but with a modified gain resistor to account for the expected

±10 V. The signals are then sampled with a 2.5 MHz 16-bit ADC and passed to an

FPGA through a circular buffer. A 30 µs delay relative to the trigger was used to

reject any beam-loading transients on the leading edge of the 100 µs pulse.

During the remaining 70 µs pulse each kicker signal was acquired 175 times and

then averaged on the FPGA to provide one data point per pulse over the EPICS net-

work. The method of acquiring the much faster 1 MHz BPM data for this experiment

relies on I-Q sampling and an algorithm called CORDIC [21] which stands for Co-

ordinate Rotation Digital Computer. The algorithm is coded on the FPGA.

An arbitrary RF signal can be represented by

y(t) = A sin(ωt+ θ0). (173)

Rewriting this equation using the addition of sines formula we have

y(t) = A cos θ0 sinωt+ A sin θ0 cosωt. (174)

Now the in-phase component is along the x-axis and the quadrature component is

along the y-axis as seen in Fig. 39. The abitrary RF signal can now be written as

y(t) = I cosωt+Q sinωt. (175)
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The I and Q samples are typically derived by phase shifting the signal by 90◦ in

hardware and then simultaneously sampling both singles to get I and Q. The in-

phase component I and the quadrature component Q are just the axes of the phasor

diagram in Fig. 39. The magnitude and phase of the RF signal can now be associated

with the values of I and Q and are written as

r =
√
I2 +Q2, (176)

θ = arctan

(
Q

I

)
. (177)

Harmonic sampling of the RF signal can be accomplished using any odd multiple

of the original 1 MHz RF signal to yield the required I-Q samples as the phasor

rotates through the four quadrants. For example consider the case where n = 2

which gives a sampling frequency of 800 Hz as shown in Fig. 40. For this case we

have
4× 1 MHz

2n+ 1
=

4× 1 MHz

2(2) + 1
= 800 Hz. (178)

This sampling scheme is illustrated in Fig. 40. At the leading edge of the first

800 ksps pulse we pick up an I+ and the next pulse picks up a Q+. The next I-Q pair

are negative and inverted to match the previous pair. In this way the data is sampled

and for each I-Q pair we can calculate the magnitude and phase using CORDIC as

described below.

The ADC samples the RF signal at 2.5 MHz. The FPGA picks out every third

data point to create a data stream at 833 ksps. The error in sampling frequency

relative to 800 ksps produces a small ripple on the sampling stream but during the

70 µs we acquire 30 I-Q pairs which can be averaged. The data quality is further

FIG. 40. A drawing showing the I-Q sampling scheme used by the data acquisition
system.
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FIG. 41. Illustration of binary search pattern for finding magnitude and phase.

improved by simultaneously using all three 833 ksps streams of interleaved data which

provides 90 I-Q samples. These are then averaged to provide one number for each

100 µs beam macropulse.

The CORDIC algorithm uses an iterative binary search to calculate the magnitude

and phase of each I-Q sample which is illustrated in Fig. 41. The initial angle of the

vector is rotated by 45 degrees. The next rotation is by half the angle; in the same

direction if the value of y is still positive or in the opposite direction if y is negative.

This repeats until the resultant lies on the x axis. Adding all of the individual angles

recovers the value of the initial angle and the magnitude is now just the value of x.

The search is made into a binary search by using powers of 2 to define the angles

TABLE 9. Values of CORDIC angles for binary search.

Angle TAN(Angle) i Nearest 2−i ATAN(2−i)
45 1 0 1 45

22.5 0.414 1 0.5 26.57
11.25 0.199 2 0.25 14.04
5.625 0.0985 3 0.125 7.125
2.8125 0.0491 4 0.0625 3.576
1.40625 0.0245 5 0.03125 1.790
0.703125 0.0123 6 0.015625 0.8952
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as indicated in Table 9. In this sense the original angle is then given by

θ =
∑
i

di arctan
(
2−i
)
, (179)

where di = +1 if yi < 0 and di = −1 if yi ≥ 0.
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CHAPTER 5

LABORATORY MEASUREMENTS AND SIMULATIONS

Results from laboratory measurements and off-line simulations that were done in

support of the thesis are presented in this chapter. To accurately measure the non-

linearities of the magnetic fields one needs to modulate the beam to large amplitudes

where the BPMs are also nonlinear. The linearization of the BPM system is pre-

sented in section 5.1. The nonlinearity of the Arc 1 BE dipoles was measured in the

lab and simulated in software before measuring with the beam. In section 5.2 we

present the multipole data from the Magnet Measurement Facility and in section 5.3

we provide the results of Tosca simulations of these same dipoles. Elegant particle

tracking code was used to simulate the beam transport across a sextupole magnet

and a dipole magnet. The results are presented in section 5.4.

5.1 BPM NONLINEARITY CORRECTION

The difference/sum method assumes that the BPM response is linear across the

whole range through the linearity constant k. Early measurements [19] of the CE-

BAF M15 and M20 BPMs have shown that the devices are linear within the ±5

mm aperture that the beam is typically held within. This research requires large

amplitude orbit excitation to explore the nonlinearities of the magnets. Under these

conditions the BPM nonlinearity must be corrected.

A surface wave transmission system had been developed at Jefferson Lab [22],

along with a precision translation stage, to perform in-air tests on the M15 and M20

BPMs (see Fig. 42).

It was demonstrated by Sommerfeld [23] that certain dielectric boundary condi-

tions allow for the existence of a traveling wave on the surface of a coaxial cylinder

with finite conductivity. Goubau [24] first proposed a method for launching and

capturing these waves as a substitute for low-loss coaxial microwave transmission

systems. The Goubau Line (G-Line) system consists of a single thin conductor

coated in a dielectric material. The wire is connected to conical launchers that excite

the proper fields for standing-wave formation. The launchers also provide impedance

matching from the 50 Ω transmission line to the nominal 200 Ω of the thin conductor.



69

FIG. 42. A picture of the BPM test stand with an M15 BPM mounted on the stage
and an M20 BPM sitting on the table.

The electron beam is simulated with a 34 AWG enameled magnet wire having a

diameter of 160 microns. This is comparable to typical beam sizes in CEBAF. The

wire is passed through the BPM can and then soldered to the center conductor of the

cones at either end of the the test stand. One end of the wire is terminated in a 50 Ω

load with the other end connected to an RF source. The wire is held under tension

within the BPM to properly simulate a beam. The BPM under test was oriented

with the X+ and X− antennas oriented in the horizontal plane. The translation

stage was then moved in 200 micron steps from +21 mm to -21 mm. The raw wire

data at each step was processed using the difference/sum method and shows that the

system behaves linearly to about ±8 mm as shown at the left in Fig. 43.

To correct for the BPM nonlinearity we follow a method used at Fermilab [25]. A

two-dimensional electrostatic model of the M15 and M20 BPMs was developed using

Poisson [26]. A potential of 1 Volt was placed on a single electrode with the outside of

the can grounded. The potential map was calculated across the interior of the BPM

and is shown as a contour plot at the right in Fig. 43. Using Green’s reciprocity

theorem [27] we can infer that the simulated voltage at any point within the BPM

is simply the voltage that would be induced on the antenna. Potential maps for the

other three antennae are generated through rotations using the inherent symmetry
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FIG. 43. Data from the BPM test stand showing the nonlinear response and the
nonlinear potential map that was generated using Poisson.

of the BPM. The input file for generating the electrostatic model for an M20 BPM

is shown in Appendix C.

The Poisson model was seeded with a dense square grid of points across the full

aperture of the BPM to simulate the nonlinearity. The points are shown in the

upper left graph of Fig. 44. For each point within the grid a spline interpolation was

performed to calculate the potential on each wire based on the Poisson model. The

difference/sum method was then applied using the nominal values for k to create a 2-

dimensional map of what would be measured with the linear method. The simulations

were done in the rotated frame which places the antennae at the top, bottom, left

and right of the grid. Significant pin cushioning of the linear map is observed in the

upper right graph of Fig. 44.

A correction of the distortion is made by generating a pair of two-dimensional

polynomials. The square grid of points and the values from the linear method are

used to calculate the coefficients in a least squares sense and then applied to the

distorted position map. The corrected grid of points is shown in the lower left part

of the same figure. The precision of the correction is gauged by plotting the absolute

value of the difference between the square grid of points and the corrected grid of

points. The method recovers the original grid to better than 100 microns across the

entire grid of points.
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FIG. 44. A sequence of plots showing the distortion of BPM data due to the limita-
tions of the difference/sum method and the results of the correction.
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FIG. 45. Beam modulation in y-plane at left and a histogram of position corrections
at right.

An example of the correction algorithm is shown in Fig. 45. At the left is a

plot of the beam position in the x − y plane with the beam centroid displaced in x

and modulated in y. A histogram of the corrections is shown at the right. The x

corrections are centered at 650 microns with the distribution biased towards the right

because of the slight curvature of the trace in the x direction. The y corrections are

centered near zero and also have a small bias towards more positive values because

the distribution is not quite centered about y = 0.

5.2 BE DIPOLE LAB MEASUREMENTS

All of the magnets that are installed in the CEBAF machine are initially qualified

at our Magnet Measurement Facility. Multiple techniques are used to measure the

field quality of the magnets relative to design specifications. These include Moving

Stretched Wire, Rotating Coil, as well as a Hall Probe Stepper Stand. The latter

was used to measure one of the meter long Arc 1 BE dipoles with data analyzed on

curved beam trajectories [28, 29].

The magnetic field in the vertical direction (By) was collected using a Hall probe.

The probe was stepped through the magnet along the midplane in a grid pattern

along the x and z directions. The longitudinal z steps went from 0.5 m outside of the

steel to the longitudinal midpoint of the 1 m magnet in steps of 0.2 cm. The probe

was then shifted in x for another run in z. The transverse x steps went from +5 cm

to -5 cm in 0.5 cm steps with the zero aligned to the center of the pole width.
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FIG. 46. A sketch of the grid of points and the coordinate system for calculating
fields along a curved trajectory.

The integrated dipole field strength is calculated along a trajectory defined by the

design bend radius of the magnet. The ideal path is derived from optics modeling

software. Along this curved trajectory s a fit is made every 0.5 cm using the local

grid of points to determine an interpolated field point (see Fig. 46). The data are

then integrated along the whole path s and multiplied by two, since only half of the

magnet was measured, to get the total dipole strength.

To determine the first order quadrupole term the raw grid of data are used to

create a grid of derivative data at each point in the two dimensional map. The

derivatives are written as

dB

dx
= (Bx−1 −Bx+1)/∆x, (180)

dB

dz
= (Bz−1 −Bz+1)/∆z. (181)

For points along the curved trajectory defined by the design bend radius of the

magnet the local derivative is calculated using interpolation of the grid of derivative

data. The interpolated points are then rotated into the r, θ coordinates system at

fixed radius and integrated. The field gradient along the θ direction is

dB

dθ
=
dB

dx
cosα +

dB

dz
sinα. (182)

This process of calculating the dipole and quadrupole strength of the magnet is

repeated for trajectories shifted in r about the design trajectory from +2.0 cm to
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FIG. 47. A plot of relative sextupole strength vs. transverse position for a BE dipole.

-2.0 cm in 0.5 cm steps. The sextupole strength as a function of transverse position

is derived by computing d2B/dr2 from the family of radial gradient data (Fig. 47).

5.3 TOSCA ANALYSIS

The TOSCA 3-D modeling software from Vector Fields was used to predict the

sextupole strength of an Arc 1 BE dipole as a function of transverse position within

the midplane as well as points above the midplane [30]. A model of the 1-meter

dipole magnet is shown in Fig. 48. Throughout the path of the beam, the model

uses 1 mm tetrahedra and quadratic interpolation between the nodes to calculate the

field. There are over thirty-three million elements and over forty-one million nodes

that are used to model the magnet.

The simulations were done for eighteen different trajectories through the dipole

magnet which are shown in Fig. 49. The trajectories start well outside the magnet

where the calculated fields are negligible and end at the longitudinal midplane. On

each of the overlapping 3 mm circles the magnetic field By is calculated at eighteen

different points. Fourier analysis is used to compute the multipole content at that

location using
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FIG. 48. The 3-D Tosca model of a CEBAF BE-style dipole. The iron above the
midplane and the pair of coils are shown.

By =
5∑
n

(An cos(nθ) +Bn sin(nθ)) . (183)

The Bn terms are the skew moments described in section 3.1 and are all zero in

the expansion for an upright dipole. The An are the normal modes with n = 0 for

the dipole term, n = 1 for the quadrupole term and n = 2 for the sextupole term.

The simulation shifts along the modelled beam trajectory by ∆s = 1 mm and

repeats the fourier decomposition for each point. The results are integrated along

the path and then multiplied by 2 because only half of the magnet is included in the

model. The data is then divided by 10 to get integral cm instead of mm. The results

for the sextupole term are presented in Fig. 50.

The results from the figure show that the sextupole strength increases as the

trajectory shifts horizontally towards the open end of the dipole magnet. This is

due to the increasing edge effects as we get towards the end of the steel. On the

other hand the results indicate that as we shift vertically away from the midplane

the sextupole term decreases. This is due to the trajectory getting closer to the pole

face of the magnet where the fields are less curved.
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FIG. 49. The arrangement of the eighteen orbits through the BE dipole and the
eighteen points around the circle used for TOSCA analysis.

FIG. 50. The integrated relative sextupole strength is plotted vs. the index of the
start position.
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5.4 ELEGANT SIMULATIONS

Simulations of the ARC1 sextupole measurements and BE dipole measurements

were conducted with a particle tracking code, developed at Argonne National Labo-

ratory, called elegant which stands for ”ELEctron Generation ANd Tracking”. The

software is capable of tracking the trajectory of electrons in the 6-dimensional phase

space (x, x′, y, y′, s, δ) where x and x′ are the horizontal transverse coordinate and

angle, y and y′ are the vertical transverse coordinate and angle, s is the total distance

travelled and δ is the fractional change in the electron momentum. The tracking for

this study was performed using second order matrices to account for the nonlinear

fields of the sextupole and the multipole error of the simulated dipoles.

A model of the beamline was created which includes all elements from the

first kicker magnet (MAZ1S08H) to the last BPM in the data acquisition system

(IPM1A21). The so called lattice file is shown in Appendix A.1 with the individual

beamline elements described below.

The quadrupole magnets in the machine are modeled by the KQUAD element.

They are described by their length L in meters and by their geometric quadrupole

strength K1 in units of 1/m2 which is defined as

K1 =
.29979× g(T/m)

p(GeV/c)
, (184)

where g is the quadrupole field gradient and p is the momentum of the beam. The

proportionality constant was defined as (1/Bρ) in section 3.1.

The sextupole magnets in the machine are modeled by the SEXT element. They

are described by their length L in meters and by their geometric sextupole strength

K2 in units of 1/m3 which is given by

K2 =
.29979× g′(T/m2)

p(GeV/c)
, (185)

where g′ is the sextupole field gradient and p is the momentum of the beam.

Each of the dipole magnets in the machine are modeled by the CSBEND element.

They are parameterized by their length L in meters and the ANGLE of the bend

in radians. A quadrupole gradient term K1, and a sextupole strength K2 are used

to capture the higher order components of the field. The entrance E1 and exit E2

angles of the beam relative to the pole face in radians are also defined and, along with

the HGAP parameter, determine the strength of the edge focusing for the dipole.
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The kicker magnets in the model are either oriented horizontally (HKICK) or

vertically (VKICK) and are typically defined as zero length elements. The relevant

parameter for driving the simulation is their KICK value which is given in radians.

The BPMs in the model are represented by the MONITOR element and are also

captured as zero length elements. They are located in the model to have the longitu-

dinal center of the real BPM antennae at the design location. And finally the space

between beamline components is referred to as a DRIFT which are simply defined

by their length L in meters.

The elegant file used to setup and run the simulations is shown in Appendix A.2.

The first part is the run setup section which specifies the lattice file and beamline

for the simulation, defines the momentum of the beam, and the expected output

files from the simulation. For this experiment the only required output is the beam

centroid file which contains the beam position and angle at each element in the

beamline for each step in the simulation.

The next segment is the run control section which defines the number of times

to run through the simulation defined by the following vary element commands. For

this simulation we simultaneously step each of the kicker magnets based on the value

in the enumeration file called corrector.sdds. The first column is composed of 1 Hz

sinusoidal data while the next column has the 21 Hz sinusoidal data. The sinusoids

were created using data from a real beam run as recorded in the data acquisition

system.

Next in the setup file is the bunched beam section which defines the number of

particles to track and some initial beam parameters. For these simulations the bunch

is restricted to a single particle since detailed information about the beam and its

evolution were not relevant to the study. Rather we are only interested in the point to

point transport across the lattice. Finally the track section simply tells the software

to record the tracked particle at each step in the simulation.

In the first simulation the sextupole at 1A14 was studied. The beam was mod-

ulated in the y-plane with the first kicker at 1 Hz and the second kicker at 21 Hz.

The modulation pattern was centered in the x-plane within the sextupole. Figure 51

shows the x position and the FFT of the position with the sextupole set to 1000 G/cm.

The spectra clearly shows the harmonic sidebands (2, 20, 22, and 42 Hz) of the two

driving frequencies that one would expect for a field that depends quadratically on

position. The simulation was repeated for multiple sextupole excitations to verify
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FIG. 51. Horizontal position and the FFT downstream of a sextupole at 1000 G/cm.

the expected response from the analytical model developed in section 3.3. The re-

sults are shown at the top in Fig. 52 and clearly show the linear dependence of the

sideband amplitudes with sextupole strength.

In the second simulation a sextupole field was added to a pair of ARC1 dipoles

(MBE1A06 and MBE1A07) by adding a K2 term to the model for each element.

The simulation used the same modulation pattern as was used for the sextupole

simulations. The intent of this study was to gauge the dependence of the multipole

amplitudes on the horizontal position of the beam within a dipole. For the real

machine study the orbit was horizontally shifted in a pair of dipoles using a four

corrector orbit bump to provide a lateral position error within the magnets parallel

to the normal trajectory. In the simulation the beam was also offset within both

dipoles but rather than introduce an orbit bump we simply assigned an alignment

error in the x-plane to shift the dipole pair about the design orbit. The results are

shown at the bottom of Fig. 52 and are in qualitative agreement with the earlier

TOSCA studies and the magnet measurement data which also show an increase in

sideband amplitude as a function of transverse position of the modulation pattern

within the dipole.
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FIG. 52. Simulation results for the sextupole study and dipole study.
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CHAPTER 6

BEAM MEASUREMENTS

The beam-based measurements that were conducted for this thesis are presented in

this chapter. In section 6.1 the overall experimental procedures for conducting the

research are discussed. In section 6.2 a discussion of the NAFF algorithm that was

used to find the amplitudes of the relevant frequencies in the spectra is presented.

This is followed by a discussion of the systematic and random errors for the ex-

periment in section 6.3. The first set of measurements involved beam modulations

within an explicit sextupole magnet in the Arc 1 beamline and are presented in

section 6.4. These measurements establish a calibration standard through the com-

parison of the amplitude of the sidebands of the modulation versus the strength of

the sextupole. Once the calibration standard was developed the measurement tech-

nique was then applied to a pair of dipole magnets in Arc1 to determine the variation

of their multipole strength versus the transverse position within the magnets. The

Magnet Measurement Facility results of section 5.2, the TOSCA measurements of

section 5.3, and the elegant simulations of section 5.4 all predict there to be a change

in the spectra with position. The final set of measurements were conducted in the

Arc 6 transport line to the Beam Switchyard. Here we gauge the overall field quality

of the entire system of magnets that comprise a CEBAF recombiner beamline. The

results are presented in section 6.6.

6.1 EXPERIMENTAL PROCEDURE

This section provides an overview of the steps taken to conduct the beam-based

portion of this research. Prior to being awarded beam time on the accelerator a

Test Plan must be submitted to the Operations Department for review. The plan

outlines all of the necessary steps required to conduct the experiment and includes

safety assessments as well as the identification of any prerequisites that need to be in

place before the research can begin. Approved experiments are then scheduled well

in advance which provides adequate time to familiarize the Operations staff with the

details of the test plan.
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The prerequisite steps for this experiment were intended to qualify the hardware

in the absence of beam. Prior to a beam run the data acquisition system is connected

in the field to the BPM patch panel and kicker hardware as described in section 4.4.

The BPM channels are calibrated without beam to determine the system’s α values

using the procedure described in section 4.2. The kicker magnets are then modulated

to test their performance relative to the field maps described in section 4.1.

At the start of a beam test, the settings for the magnets in the accelerator are

saved. These values are used to recover the accelerator after the tests are completed.

The beam dump at the end of the beamline under test is inserted to ensure that the

beam cannot be transported beyond the intended termination point (see Fig. 1). Low

power tune beam, as discussed in section 4.3 is transported to the end of the line so

that the beam steering can be optimized. The ideal trajectory for the electron beam

is defined by the quadrupole centers along the lattice. This is checked by individually

modulating each quadrupole field and monitoring the down beam transport. Since

the field is zero at the center of a quadrupole, a well centered beam will not be

deflected during quad modulation. An automated routine modulates the quadrupole

setting while the beam is manually steered with corrector magnets. When the beam is

in the center the downstream orbit deflections are at a minimum. Once this position

is found an offset is entered into the adjacent BPM to match its electrical center with

the magnetic center of the quad. This reference orbit can then be readily restored as

necessary during the course of measurements.

Once the preliminary steps to establish a nominal orbit are completed the beam

mode is changed to the 500 Hz, 100 µs structure required for the tests. The first beam

measurement is typically performed without modulation to measure the inherent

stability of the tune. An example of the stability of the beam centroid in the absence

of explicit modulation is shown in Fig. 53. The dominant source of noise is due to AC

line fluctuations on the magnet power supplies and is discussed further in section 6.3.

A typical sequence for beam measurements during sextupole runs is shown below.

• Verify nominal orbit with tune mode beam.

• Adjust sextupole setting and restore any orbit error due to minor steering errors

within the sextupole.

• Switch to 500 Hz mode and turn on beam modulation with the pair of kickers.



83

FIG. 53. Typical beam centroid stability showing the x position as a function of time
for Beam Position Monitor IPM1A16.

• Start the run acquiring 33000 samples in 66 seconds.

• Check online data quality at the end of the run to look for shifts in the average

position that may come from uncontrolled errors in the transport.

• Turn off the beam modulation.

• Verify nominal orbit with tune mode beam.

• Adjust sextupole settings and or orbit for next measurement and repeat the

sequence.

Once all of the runs were completed the modulation hardware and data acquisition

system were shut down. The settings for the machine were restored and checked

relative to the earlier save with tune mode beam. Dipole runs were performed in a

similar way but instead of adjusting a sextupole excitation the beam orbit would be

adjusted between measurements.

Off line analysis of the data was then performed and followed the sequence as

outlined below and shown in the MATLAB code in Appendix B.

• Read BPM wire counts and kicker magnet voltages from data file.
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• Convert wire counts to x and y position data in the rotated frame.

• Correct for the nonlinearity of the calculated position using the Poisson model.

• Rotate the position data to the laboratory frame.

• Take Fast Fourier Transform of corrected position data.

• Find frequencies and amplitudes with NAFF algorithm.

6.2 NAFF ALGORITHM

The Numerical Application for Finding Frequencies was initially developed by

Jacques Laskar [14] and was used in astrophysics research to determine the fre-

quencies and amplitudes of orbits in complex galactic systems. This technique of

frequency map analysis of Hamiltonian systems was recognized to be well suited to

study the long term stability and dynamics of the quasi-periodic nonlinear orbits in

particle accelerators [31].

The algorithm follows an iterative approach to find the complex frequencies and

amplitudes and starts by first removing the average value of the time domain signal

and applying a positive, even weighting function χ(t/T ) to the standard definition

of the FFT. We have

φ(ω) = 〈f(t), eiωt〉 =
1

2T

∫ T

−T
f(t)eiωtχ(t/T )dt. (186)

To determine the first frequency one searches for the maximum amplitude using the

above equation. For proper normalization the weighting function must satisfy

1/2

∫ 1

−1
χ(t)dt = 1. (187)

The NAFF algorithm used in this research employs a Hanning window as the

weighting function given by

χ(t) = 1 + cos(πt), (188)

which is readily found to satisfy Eq. (187). The Hanning window broadens the peaks

while reducing the sidelobes which allows for a more precise determination of the

frequencies and amplitudes. Once the maximum FFT amplitude is found the overlap

is subtracted from the original signal and the process is repeated until the desired
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FIG. 54. A plot of the relative error in amplitude for FFT versus NAFF for the 20
and 22 Hz sidebands as a function of sextupole strength.

number of peaks is found. Figure 54 shows the comparison between NAFF and FFT

with NAFF generally providing approximately a 1% correction to the sidebands at

20 and 22 Hz across the sextupole settings.

6.3 MEASUREMENT ERROR

As in all experiments there are systematic errors and random errors that con-

tribute to the noise in the system and that can affect the quality of the data. The

main source of systematic error is related to how well the beam is centered in the

multipole. As was mentioned in section 6.1, a quadrupole modulation technique

was used to find the magnetic center of the idealized beam trajectory. Keeping the

beam on this same reference orbit throughout the measurement helps to minimize

the systematic error. During a typical run the residual error at the downstream BPM

was around 200 microns with full excitation of the sextupole to 1000 G/cm. This is

equivalent to having an orbit error relative to the ideal trajectory at the sextupole

of around 1.4 mm. This is a relatively large systematic error that could have been

managed better. On the other hand one could also consider the sideband amplitude
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FIG. 55. A plot of the amplitude of the 20 Hz peak for y − y′ modulation as a
function of x position within the sextupole.

sensitivity to transverse orbit error within the sextupole. By modulating the beam

in the y-plane at different x positions and recording the spectra an estimate of this

sensitivity is determined. An example of the result for the 20 Hz sideband is shown

in Fig. 55. The slope of the fit with 1% error bars is 5 × 10−4. So we see that the

amplitude is relatively insensitive to the position of the beam centroid within the

sextupole.

The main source of statistical noise on the beam is due to the 60 Hz and higher

harmonics that come from Arc magnet power supply fluctuations. These errors are

in both planes with the vertical fluctuations coming from the magnets in the East

Arc Spreader and the horizontal fluctuations coming from the Dogleg and East Arc

magnets. The amplitude of these errors at each location depend on the transport

optics between the many source points and the Beam Position Monitors. In Fig. 56

the noise at IPM1A16 is plotted as an example of the typical centroid stability with

σx = 230 µm and σy = 188 µm. The FFT of the position data in both planes is

shown in Fig. 57 with the frequency axis set to highlight the strength of the primary

line harmonic at 60 Hz.

In a beam modulation experiment such as this, one can minimize the effect of
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FIG. 56. Plot of x and y centroid noise at IPM1A16. The main source of peak
broadening is due to AC ripple on magnet currents.
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FIG. 57. FFT of x and y centroid noise at IPM1A16 showing the amplitude of the
60 Hz AC ripple on magnet currents.
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FIG. 58. The few parts in a thousand amplitude of the residual peaks in the absence
of sextupole excitation sets a lower bound on the measurement error.

power supply noise by carefully selecting the kicker frequencies so that there is suf-

ficient separation of the driving frequencies and their harmonics from the AC line

peaks. Picking 1 Hz and 21 Hz works well for studying the beam transport system

in the presence of the harmonics due to sextupole and octupole fields as shown in

Table 3. The narrowness of the harmonic peaks also make it easy to distinguish the

different frequencies in the spectra.

The dominant source of uncertainty for the sextupole calibration runs is related

to the residual peaks in the spectra with the sextupole off. The plot in Fig. 58 shows

that even in the absence of explicit sextupole excitation there are still measurable

peaks that are discernable above the background. The beamline between the kicker

magnets and the sextupole under test has many potential sources of nonlinearity.

There are two half-meter long and a one-meter long dipole in the dogleg system as

well as six one-meter long dipoles in the Arc proper that all potentially can contribute

to the residual nonlinearity. For this experiment the limited number and location of

Beam Position Monitors coupled with the long distance between the AC kickers and

the magnets under test provide a source of error. The final statistical noise source

for the experiment is due to the stochastic fluctuations in the system which set the

overall noise floor and the limit for the best that one can do regarding the signal to
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FIG. 59. Upper plot shows the spectra with the sextupole set to 1000 G/cm. Lower
plot with sextupole ramped to zero showing only the remnant field in the magnet.
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noise ratio. The plots in Fig. 59 show the spectra at the peak sextupole excitation as

well as the case with the sextupole ramped to zero. The remnant field in the magnet

is discernable above the background.

6.4 SEXTUPOLE MEASUREMENTS

In this section the results from the calibration runs are presented. The beam was

modulated in the horizontal midplane and then in the vertical midplane for multiple

settings on the sextupole. The beam centroid data for a typical run in the y-plane is

shown in Fig. 60. Here we see that the modulations stay in plane until we cross the

sextupole MSB1A14 which for this run was set to 1000 G/cm. Beyond the sextupole

starting at BPM 1A16 we see the y-plane modulations become coupled to the x-

plane due to the vertically oriented magnetic fields along the y midplane. For the

x-plane modulations of Fig. 61 we see no folding of the modulation pattern to the

other plane. This is because the fields along the x midplane are transverse to the

modulation pattern and the Lorentz forces are in the plane of modulation.

For the calibration runs the field within the sextupole was varied from 0 to 1000

G/cm in steps of 100 G/cm. At each sextupole setting the beam orbit was restored

to the nominal orbit with tune beam to correct for any minor steering error from the

sextupole fields. This ensures that the beam modulation in the downstream BPM

was always centered about the same point.

The analytical model of section 3.3 predicts a linear relationship for the amplitude

of the harmonic frequencies with sextupole excitation. The data for the y-plane

modulation is plotted in Fig. 62 and the data for the x-plane modulation runs is

plotted in Fig. 63. For the x-plane modulations the sideband amplitudes below 400

G/cm were overcome by the broad 1 Hz and 21 Hz primary modulation frequencies

as they are all in the same plane. On the other hand the cross plane coupling under

y-plane modulations allows for excellent separation of the harmonics from the driving

frequencies as is shown in the bottom of the figure.

The data for the calibration runs is shown in Tables 11 and 10 for the x-plane

and y-plane respectively. An entry of NA means that there was no discernable peak

at that frequency and sextupole setting.

Both sets of measurements show a linear dependence of sideband amplitude with

sextupole excitation. The lack of signal at small sextupole settings under horizontal

excitation makes it difficult to measure the relatively weak signal from dipoles as was
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FIG. 60. Plots of the transverse position for all eight BPMs during a sextupole run
with y − y′ modulation. Cross plane coupling is evident starting at 1A16.



93

FIG. 61. Plots of the transverse position for all eight BPMs during a sextupole run
with x− x′ modulation. No cross plane coupling occurs.
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TABLE 10. Spectral data for y − y′ modulation in Sextupole mid-plane

Sextupole (G/cm) 1 Hz 2 Hz 20 Hz 21 Hz 22 Hz 42 Hz
0 0.008 0.0139 NA 0.0092 NA NA

100 0.1002 0.0481 0.0451 0.0994 0.0442 NA
200 0.1111 0.0782 0.0768 0.1052 0.0782 0.0175
300 0.1228 0.1134 0.1094 0.1123 0.1104 0.0209
400 0.1293 0.1435 0.1424 0.1183 0.1409 0.0295
500 0.1384 0.1762 0.1768 0.1189 0.1766 0.0371
600 0.1547 0.2101 0.2105 0.1281 0.2113 0.0467
700 0.1569 0.2429 0.2439 0.1312 0.2438 0.0562
800 0.1704 0.2769 0.2783 0.1365 0.2755 0.0635
900 0.1723 0.3074 0.3101 0.1408 0.3100 0.0698
1000 0.1826 0.3399 0.3428 0.1437 0.3437 0.0790

TABLE 11. Spectral data for x− x′ modulation in Sextupole mid-plane

Sextupole (G/cm) 1 Hz 2 Hz 20 Hz 21 Hz 22 Hz 42 Hz
0 3.1527 NA 0.0447 NA NA NA

100 3.1569 NA 0.0449 NA NA NA
200 3.1573 NA 0.0488 NA NA NA
300 3.1604 0.0159 0.0518 NA NA NA
400 3.1597 NA 0.0225 0.0550 0.0214 0.0232
500 3.1677 0.0207 0.0281 0.0577 0.0265 0.0257
600 3.1656 0.0242 0.0361 0.0618 0.0366 0.0299
700 3.1685 0.0273 0.0429 0.0648 0.0428 0.0348
800 3.1715 0.0282 0.0499 0.0671 0.0471 0.0410
900 3.1827 0.0304 0.0564 0.0808 0.0566 0.0445
1000 3.1851 0.0358 0.0641 0.0861 0.0628 0.0488
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FIG. 62. Beam data for the sextupole measurements with y-plane modulation. The
2 Hz and 42 Hz data are at the top and the 20 Hz and 22 Hz data are at the bottom.
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FIG. 63. Beam data for the sextupole measurements with x-plane modulation. The
2 Hz and 42 Hz data are at the top and the 20 Hz and 22 Hz data are at the bottom.
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found during the next phase of the beam measurements.

6.5 BE DIPOLE MEASUREMENTS

In this section the results for the dipole measurements in Arc 1 are presented.

For this test the sextupole magnet used earlier was degaussed so that it would not

interfere with measuring the relatively weak allowed multipole content of the dipole

pair. As was discussed in section 5.4, a four corrector bump was used to offset the

beam within the dipole magnets. The quadrupoles within the orbit bump were also

degaussed to eliminate the quad kicks which would otherwise oppose the corrector

kicks. For each measurement tune beam was used to establish a precise orbit across

the dipole pair and to return the beam to the center of the BPM used to make the

measurements.

The TOSCA measurements and magnet measurement data both show that the

extent of the nonlinearity due to allowed sextupole should increase with an offset in

the horizontal direction. The TOSCA results also showed a decrease in the multipole

content as the beam rises above the midplane. Measurements of the dipole pair

were done in both planes. For the horizontal tests the beam was modulated in the

midplane and in 1 mm steps above the midplane to 5 mm. There were no frequencies

detected other than the primary driving frequencies and the AC line harmonics.

This limitation was also observed during the sextupole calibration runs. During x-

plane modulation the Lorentz forces are in the same plane as the beam modulation

preventing the relatively weak signal from being detected. For the earlier sextupole

calibration run there were no peaks below 400 G/cm. Moving to the y-plane however

offered better results. For these tests the beam was modulated in the y-plane at

x=0 mm to x =10 mm in 1 mm steps.

A plot of the results for the dipole measurements is shown in Fig. 64. The raw

data for the measurement is shown in Table 12 with the x position corrected for the

nonlinearity of the Beam Position Monitor. The linear trend is clear from the data

for all frequencies and qualitatively compares to the results from TOSCA and the

Magnet Measurement Facility. TOSCA also predicts that beyond a horizontal orbit

of 12 mm the field begins to rise more sharply. The beam-based test are unfortunately

limited by the physical aperture of the beam pipe. Attempting to modulate the beam

beyond 1 cm caused beam scraping. The final point at x= 10.342 mm hints at this

departure from the linear trend.
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FIG. 64. Beam data for y-plane modulation in a pair of BE dipoles.

TABLE 12. Spectral data for y − y′ modulation vs. x position in BE Dipole

Corr. x-pos (mm) 1 Hz 2 Hz 20 Hz 21 Hz 22 Hz 42 Hz
0.000 0.0391 0.0192 0.0786 0.0579 0.0797 0.0383
1.000 0.0475 0.0199 0.0821 0.0776 0.0808 0.0403
2.000 0.0488 0.0193 0.0851 0.0794 0.0869 0.0408
3.000 0.0495 0.0191 0.0868 0.0789 0.0862 0.0431
4.000 0.0482 0.0207 0.0869 0.0781 0.0869 0.0430
5.000 0.0513 0.0224 0.0874 0.0766 0.0866 0.0440
6.000 0.0514 0.0217 0.0866 0.0782 0.0864 0.0440
7.033 0.0511 0.0198 0.0860 0.0761 0.0856 0.0441
8.105 0.0480 0.0203 0.0855 0.0749 0.0850 0.0442
9.205 0.0490 0.0216 0.0881 0.0737 0.0860 0.0439
10.342 0.0423 0.0285 0.0976 0.0658 0.0993 0.0469
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6.6 BSY RECOMBINER MEASUREMENTS

The final set of beam-based tests were conducted in the Beam Switchyard Re-

combiner using the MAZ kicker magnets that were fabricated as part of this research.

The intent of these tests was to qualify the extent of the nonlinearity of the whole

system of magnets by performing beam modulations in both planes at multiple am-

plitudes. To simplify the lattice the quadrupoles downstream of the kicker magnets

were degaussed. Without the quad kicks it was much easier to establish the desired

modulation amplitudes. For these test we chose amplitudes of 5 mm, 10 mm and, 15

mm at the BPM near the end of the beamline. The three different modulations in

both plane are shown in Fig. 65.

The source of any nonlinearity in this transport line can come from errors in

individual magnets or from the magnets in the adjacent beamlines which are tightly

nested as the beamlines come together in the Beam Switchyard. A TOSCA model of

this system had not been developed to compare against so we rely on the calibration

runs and ARC1 dipole measurements to bound the field quality of the system. A

linear result to ±5 mm is adequate as that is typically the steering allowance used in

setting up the machine. The results are shown in the FFT plots in Figs. 66 and 67.

The first set are the x-plane modulations. At 5 mm only the primary frequencies

are visible in the modulation plane. Other than noise in the y-plane there’s also

a 1 Hz peak two orders of magnitude down from that in the x-plane which likely

is due to a small roll error in the placement of the first horizontal kicker. At 10

mm we see the 1 Hz peak grow in the y plane and in the x-plane we start to see

frequencies consistent with an octupole field which are even more pronounced in the

bottom plot. At these amplitudes we begin to approach the limit of the polynomial

correction for the BPM nonlinearity which was only computed to a 2 cm grid or an

apparent position of around 16 mm.

The second set of measurements are with y-plane modulations. At 5 mm we see

the strong driving frequencies at the right and coupling to the other plane at both

frequencies. The roll error for both vertical kickers is apparently over three degrees

and will need to be checked at the next opportunity. At 10 mm we again start to

see octupole sidebands which become more apparent in the bottom trace and once

again likely due to limitations with the correction algorithm.
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FIG. 65. Plots of small, medium and large beam modulations as measured at the
6T09 BPM.
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FIG. 66. Series of FFT plots of the 6T09 BPM for x− x′ modulation.
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FIG. 67. Series of FFT plots of the 6T09 BPM for y − y′ modulation.
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CHAPTER 7

CONCLUSIONS

7.1 SUMMARY OF EXPERIMENT

This experiment set out to study the feasibility of using simultaneous transverse

beam modulation as a means of measuring the nonlinear fields of the magnets that

make up a beam transport system. The intent was to develop a calibration standard

with a known and controllable nonlinear sextupole and to then use the technique

to characterize the nonlinear multipole content in dipoles as well as whole systems

of magnets. Traditional methods of tuning the CEBAF accelerator have used linear

techniques to tune the optics of the machine which are of course insensitive to non-

linear effects. The development of this technique is hoped to be able to extend our

tuning capabilities to account for nonlinear effects when gauging the overall quality

of the beam tune.

The derivation of the functional form of magnetic fields within dipoles,

quadrupoles, sextupoles, and octupoles as well as the general multipole expansion

provide a clear foundation for understanding the interaction of the beam with the

Lorentz forces of the beam transport system. In particular we gain the ability to

predict the expected harmonic content for different types of magnets based on the

functional form of the fields as derived using Maxwell’s equations.

Fundamental linear optics theory and the well-known matrix formalism for linear

systems was presented to provide a basis for the development of an analytical model.

This simple model was used to establish the expected frequencies for the harmonic

content of sextupoles and octupoles when the beam is simultaneously modulated at

two distinct frequencies.

Through the development of the Chebyshev formalism we have shown that the

unique properties of this class of polynomials coupled with the orthogonality of

Fourier cosine expansions allows us to perform modulation experiments with mini-

mum error. With the application of precise modulation frequencies to the beam and

the use of the NAFF algorithm to minimize peak detection errors we found good

agreement between the theory, multiple models and the experimental results.
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The existing air-core kicker magnets in Arc 1 were well suited for this research.

In general they were able to provide sufficient field at 1 Hz and 21 Hz as they

were originally designed as part of a 30 Hz system. For the measurements in the

Beam Switchyard Recombiner there were no magnets available. New magnets were

designed, fabricated, tested and installed to perform this research. Using the Law

of Biot-Savart a simple model of an air-core magnet was developed to come up

with a working design. Bench measurements verified that the integrated dipole field

strength was within 2% of the prediction. Thermal performance was also well within

specification.

It was important to minimize the nonlinear fields of the kicker magnets so that

their multipole content would not impact the results. The fabrication and assembly

process successfully provided magnets with low harmonic content. In fact their per-

formance in this regard was better than the magnets in Arc 1 despite them being

physically longer. One thing that I had not considered during the design process was

the effect of the higher inductance. Initial measurements showed a severe roll-off at

low frequencies. A simple change to a gain resistor provided better matching and

fixed the problem.

Both the existing magnets in Arc 1 and the new magnets were installed with a

few degree roll about the beamline axis. This provides a small amount of cross-plane

coupling. A better job could have been done to manage the error.

The nonlinear errors of the Beam Position Monitor System were corrected using

a Poisson model. Good results were achieved across a ±2 cm aperture in both planes

with correction to better than 10 microns.

The data acquisition system required extensive work to integrate it into the mea-

surement scheme. The use of I-Q sampling and the CORDIC algorithm worked well

with the 499 MHz beam micropulse structure. The end result provided exceptional

performance with regard to the signal:noise ratio and overall repeatability of mea-

surement results.

The results from the Magnet Measurement Facility and TOSCA simulations were

used to predict the expected behaviour for dipole measurements. Both predicted an

increase in multipole strength as a function of position which was confirmed with

beam-based measurements.

The elegant software package was used to develop a model of the beamline. Simu-

lations were then conducted for sextupole and dipole magnets. The model predicted
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that there should be a linear increase in harmonic content with sextupole excitation.

The model also predicted an increase in harmonic content as a function of transverse

position within a dipole. Both were confirmed with beam-based measurements.

The beam measurements for the sextupole calibration run and the elegant model

both showed a linear dependence of amplitude with sextupole excitation for all har-

monic sidebands. The difference in slope between beam measurements and the model

can be attributed to a mismatch between the linear model and the real machine

transport.

The beam measurements for the BE dipole magnets in Arc 1 verified the qual-

itative results from TOSCA, Magnet Measurement and elegant simulations. The

amplitude of the sidebands increase as a function of transverse position in the dipole.

The real machine aperture limited the extent to which this could be measured due

to beam loss on the vacuum beam tube at large transverse position.

The measurements in the Beam Switchyard Recombiner indicate that within a

±5 mm aperture the system is very linear. Larger amplitude excitations do indicate

a departure from linearity. A detailed model of this system was not developed for

comparison.

Overall the experiment was successful in measuring the nonlinear fields of sex-

tupoles, dipoles and systems of magnets with good signal:noise.

7.2 SUGGESTIONS FOR FUTURE WORK

Looking forward, its likely that more measurements will be made as the 12 GeV

machine is commissioned. Some improvements in the methods used here and the

upgrade of existing hardware will make measurements such as these more integrated

in the accelerator. For example, the BPM electronics used here are now decommis-

sioned. The new BPM systems that are being installed have onboard data acquisition

hardware that rival what was used here and are distributed around the whole ma-

chine.

The nonlinear correction algorithm for the Beam Position Monitor System used

here had not been implemented in the machine before this research. These algo-

rithms are being built into the hardware which will make the model more precise.

In particular the beam orbit in the Extraction regions are typically well outside the

linear range of the system.

There are many complementary machine modeling techniques under development
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at Jefferson Lab that are all aimed at nailing down the linear model. Coupling this

research with those activities will make commissioning the machine far more efficient

and effective in the 12 GeV era.
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APPENDIX A

ELEGANT SIMULATION FILES

A.1 ARC 1 LATTICE FILE

The following text describes the beamline for simulating the ARC1 experiment

as described in section 5.4. It includes all components on the beamline from the

MAZ1S08H kicker to the IPM1A21 Beam Position Monitor. The settings in the

model match the values that were in the control system during the beam tests.

MAZ1S08H: HKICK, L=0, KICK=0, TILT=0, STEERING=0

D116: DRIFT, L=5.08611

IPM1S08: MONITOR, L=0

MQB1S08: KQUAD, L=0.15, K1=1.521231, TILT=0

MBT1S08H: HKICK, L=0, KICK=0, TILT=0

MBT1S08V: VKICK, L=0, KICK=0, TILT=0

MAZ1S09V: VKICK, L=0, KICK=0, TILT=0, STEERING=0

IPM1S09: MONITOR, L=0

MQB1S09: KQUAD, L=0.15, K1=-1.50963, TILT=0

MBT1S09V: VKICK, L=0, KICK=0, TILT=0

IPM1S10: MONITOR, L=0

MQB1S10: KQUAD, L=0.15, K1= 7.410557e-01, TILT=0

MBT1S10H: HKICK, L=0, KICK=0, TILT=0

MBT1S10V: VKICK, L=0, KICK=0, TILT=0

MAZ1E01H: HKICK, L=0, KICK=0, TILT=0, STEERING=0

MAZ1E01V: VKICK, L=0, KICK=0, TILT=0, STEERING=0

IPM1E01: MONITOR, L=0

MQB1E01: KQUAD, L=0.15, K1=-0.373350, TILT=0

MBT1E01H: HKICK, L=0, KICK=0, TILT=0

MBT1E01V: VKICK, L=0, KICK=0, TILT=0

D121: DRIFT, L=0.4803

MBW1E01: CSBEND, L=0.500137 &
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, ANGLE=-0.0405309085544383, K1=0 &

, TILT=0 &

, E1=0, HGAP=0, FINT=0.5 &

, E2=-0.0405309085544383, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

D122: DRIFT, L=5.75472

MBX1E02: CSBEND, L=1.00027 &

, ANGLE=0.0810616425759514, K1=0 &

, TILT=0 &

, E1=0.0405309085544383, HGAP=0, FINT=0.5 &

, E2=0.0405309085544383, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

MBW1E03: CSBEND, L=0.5001370000000001 &

, ANGLE=-0.0405309085544383, K1=0 &

, TILT=0 &

, E1=-0.0405309085544383, HGAP=0, FINT=0.5 &

, E2=0, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

D123: DRIFT, L=0.525003

IPM1E02: MONITOR, L=0

MQB1E02: KQUAD, L=0.15, K1=0.556967, TILT=0

MBT1E02H: HKICK, L=0, KICK=0, TILT=0

MBT1E02V: VKICK, L=0, KICK=0, TILT=0

D124: DRIFT, L=15.6361

IPM1E03: MONITOR, L=0

MQB1E03: KQUAD, L=0.15, K1=-0.613577, TILT=0

MBT1E03H: HKICK, L=0, KICK=0, TILT=0

MBT1E03V: VKICK, L=0, KICK=0, TILT=0

D124A: DRIFT, L=0.36866

IHA1E03: MONITOR, L=0

D124B: DRIFT, L=15.2675
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IPM1A01: MONITOR, L=0

MQB1A01: KQUAD, L=0.15, K1=1.05041, TILT=0

MBT1A01H: HKICK, L=0, KICK=0, TILT=0

MBT1A01V: VKICK, L=0, KICK=0, TILT=0

ITV1A01: MONITOR, L=0

D125: DRIFT, L=1.71272

MQB1A02: KQUAD, L=0.15, K1=-0.288196, TILT=0

D126: DRIFT, L=2.68242

MKMATCH1S: MARK &, FITPOINT=1

MBE1A01: CSBEND, L=1.00161 &

, ANGLE=0.196349540849362, K1=-0.00229840648881061 &

, TILT=0 &

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 &

, E2=0.09817477042468099, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

D127: DRIFT, L=5.2152

IPM1A03: MONITOR, L=0

MQB1A03: KQUAD, L=0.15, K1=-1.16578, TILT=0

MBT1A03V: VKICK, L=0, KICK=0, TILT=0

D128: DRIFT, L=2.3809

D159: DRIFT, L=0.15

D129: DRIFT, L=0.21202

IPM1A04: MONITOR, L=0

MQB1A04: KQUAD, L=0.15, K1=2.13112, TILT=0

MBT1A04H: HKICK, L=0, KICK=0, TILT=0

D130: DRIFT, L=0.70155

ITV1A04: MONITOR, L=0

D131: DRIFT, L=1.87544

IPM1A05: MONITOR, L=0

MQB1A05: KQUAD, L=0.15, K1=-0.84544, TILT=0

MBT1A05V: VKICK, L=0, KICK=0, TILT=0

D132: DRIFT, L=5.05061

MBE1A02: CSBEND, L=1.00161 &
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, ANGLE=0.196349540849362, K1=-0.00229840648881061 &

, TILT=0 &

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 &

, E2=0.09817477042468099, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

IPM1A06: MONITOR, L=0

MQB1A06: KQUAD, L=0.15, K1=0.79145, TILT=0

MBT1A06H: HKICK, L=0, KICK=0, TILT=0

D133: DRIFT, L=4.54514

MBE1A03: CSBEND, L=1.00161 &

, ANGLE=0.196349540849362, K1=-0.00229840648881061 &

, TILT=0 &

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 &

, E2=0.09817477042468099, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

IPM1A07: MONITOR, L=0

MQB1A07: KQUAD, L=0.15, K1=-0.849233, TILT=0

MBT1A07V: VKICK, L=0, KICK=0, TILT=0

D134: DRIFT, L=2.74293

IPM1A08: MONITOR, L=0

MQB1A08: KQUAD, L=0.15, K1=1.56739, TILT=0

MBT1A08H: HKICK, L=0, KICK=0, TILT=0

D135: DRIFT, L=2.93902

IPM1A09: MONITOR, L=0

MQB1A09: KQUAD, L=0.15, K1=-0.757331, TILT=0

MBT1A09V: VKICK, L=0, KICK=0, TILT=0

D136: DRIFT, L=5.0506

MBE1A04: CSBEND, L=1.00161 &

, ANGLE=0.196349540849362, K1=-0.00229840648881061 &

, TILT=0 &

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 &

, E2=0.09817477042468099, EDGE_ORDER=1 &
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, INTEGRATION_ORDER=4 &

, N_KICKS=20

D137: DRIFT, L=2.38277

IPM1A10: MONITOR, L=0

D138: DRIFT, L=2.38277

IPM1A11: MONITOR, L=0

MQB1A11: KQUAD, L=0.15, K1=1.243258, TILT=0

MBT1A11H: HKICK, L=0, KICK=0, TILT=0

MBE1A05: CSBEND, L=1.00161 &

, ANGLE=0.196349540849362, K1=-0.00229840648881061 &

, TILT=0 &

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 &

, E2=0.09817477042468099, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

IPM1A13: MONITOR, L=0

MQB1A13: KQUAD, L=0.15, K1=-0.897279, TILT=0

MBT1A13V: VKICK, L=0, KICK=0, TILT=0

MSB1A14: SEXT, L=0.15, K2=32.65, ORDER=2, DX=0.00

IPM1A14: MONITOR, L=0

MQB1A14: KQUAD, L=0.15, K1=1.39555, TILT=0

MBT1A14H: HKICK, L=0, KICK=0, TILT=0

D157: DRIFT, L=1.87544

D140: DRIFT, L=0.51167

MQB1A15: KQUAD, L=0.15, K1=-0.854162, TILT=0

MBT1A15V: VKICK, L=0, KICK=0, TILT=0

MBE1A06: CSBEND, L=1.00161 &

, ANGLE=0.196349540849362, K1=-0.00229840648881061 &

, TILT=0 &

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 &

, E2=0.09817477042468099, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

IPM1A16: MONITOR, L=0
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MQB1A16: KQUAD, L=0.15, K1=0.539361, TILT=0

MBT1A16H: HKICK, L=0, KICK=0, TILT=0

MBE1A07: CSBEND, L=1.00161 &

, ANGLE=0.196349540849362, K1=-0.00229840648881061 &

, TILT=0 &

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 &

, E2=0.09817477042468099, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

D141: DRIFT, L=5.51485

MQB1A17: KQUAD, L=0.15, K1=-1.00616, TILT=0

MBT1A17V: VKICK, L=0, KICK=0, TILT=0

IPM1A18: MONITOR, L=0

MQB1A18: KQUAD, L=0.15, K1=1.29706, TILT=0

MBT1A18H: HKICK, L=0, KICK=0, TILT=0

D158: DRIFT, L=2.23747

IPM1A19: MONITOR, L=0

MQB1A19: KQUAD, L=0.15, K1=-0.5900030000000001, TILT=0

MBT1A19V: VKICK, L=0, KICK=0, TILT=0

MBE1A08: CSBEND, L=1.00161 &

, ANGLE=0.196349540849362, K1=-0.00229840648881061 &

, TILT=0 &

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 &

, E2=0.09817477042468099, EDGE_ORDER=1 &

, INTEGRATION_ORDER=4 &

, N_KICKS=20

D142: DRIFT, L=2.68242

IPM1A21: MONITOR, L=0

D1000: DRIFT, L=4.563783

D1001: DRIFT, L=0.522307

D1003: DRIFT, L=4.66066

D1004: DRIFT, L=0.42545

D1005: DRIFT, L=14.8678

D1006: DRIFT, L=0.2921
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D1007: DRIFT, L=0.47625

D117: DRIFT, L=4.46076

D118: DRIFT, L=0.62535

D119: DRIFT, L=14.5108

D120: DRIFT, L=0.5

A.2 ARC1 ELEGANT FILE

The following text contains the instructions for performing the simulations of the

experiment using the lattice of the previous section. The segments of the file are

described in section 5.4.

&run_setup

lattice="ARC1.lte",

use_beamline="ARC1",

p_central_mev=559.865372797133,

centroid=0/%s.cen

&end

&run_control n_indices=1

&end

&vary_element

index_number=0

enumeration_file=corrector.sdds

enumeration_column=MAZ1S09V

name=MAZ1S09V

item=VKICK

&end

&vary_element

index_number=0

enumeration_file=corrector.sdds

enumeration_column=MAZ1E01V

name=MAZ1E01V

item=VKICK

&end

&bunched_beam
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n_particles_per_bunch=1,

emit_x=2e-09, emit_y=2e-09,

beta_x=6.35476, alpha_x=-0.0575519,

beta_y=27.1339, alpha_y=-1.86361

sigma_dp=2e-05,sigma_s=0.0,

distribution_type[0] = 3*"gaussian",

distribution_cutoff[0] = 3*3,

enforce_rms_values[0]=1,1,1

&end

&track

&end
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APPENDIX B

MATLAB CODE FOR ANALYZING BPM WIRE DATA

The following code was used to convert the raw data from the 32 BPM wires to

position data, rotate the position data to the lab frame and calculate the Fast Fourier

transform and Power Spectral Density of the time domain data.

%Convert BPM 4-channel wire data to properly rotated BPM positions

%The data_in matrix contains the raw wire data

%The BPM alpha values are read from the alpha matrix

%The BPM names are read from the alphatext matrix

%The sample rate is typically 500 Hz.

%

function [x,y] = wires2fft_psd(data_in,alpha,alphatext,sample_rate)

%k=18.81; %Sensitivity for M15 BPM

k=25.67; %Sensitivity for M20 BPM

m=length(data_in);

xrot=zeros(size(data_in)); %Preallocate memory

yrot=zeros(size(data_in)); %Preallocate memory

%

%Loop for converting wire data to position data

%in rotated frame which is then rotated to the

%laboratory frame

%

for n=(2:4:30)

xrot(:,0.25*n+0.5)=k*(data_in(:,n)-alpha(0.25*n+0.5,1)

*data_in(:,n+1))./(data_in(:,n)+alpha(0.25*n+0.5,1)*data_in(:,n+1));

yrot(:,0.25*n+0.5)=k*(data_in(:,n+2)-alpha(0.25*n+0.5,2)

*data_in(:,n+3))./(data_in(:,n+2)+alpha(0.25*n+0.5,2)*data_in(:,n+3));

x=cos(pi/4)*xrot-sin(pi/4)*yrot; %rotate to lab frame

y=cos(pi/4)*yrot+sin(pi/4)*xrot; %rotate to lab frame

%
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%Plot beam aspect ratio in x-y plane

%

plot(x(:,0.25*n+0.5),y(:,0.25*n+0.5),’k.’,’MarkerSize’,.1)

grid on

xlim([-12,12])

ylim([-12,12])

xlabel(’X Position (mm)’)

ylabel(’Y Position (mm)’)

title(alphatext(0.25*n+0.5+1,1));

pause

end

%

%Determine the Fourier Transform and the Power Spectral Density

%of the Beam Position Monitor time-domain data.

%

x=x(1:m,1:8);

y=y(1:m,1:8);

NFFT=2^15;

X=fft(x,NFFT)/m;

Y=fft(y,NFFT)/m;

XPSD=X.*conj(X);

YPSD=Y.*conj(Y);

f=sample_rate/2*linspace(0,1,NFFT/2+1);

figure;

%

%Plot FFT and PSD

%

for index=(1:8)

subplot(2,2,1);semilogy(f,2*abs(X(1:NFFT/2+1,index)));

grid(’on’);

xlim([0,45]);

ylim(’auto’);

xlabel(’Frequency (Hz)’);

ylabel(’Power’);
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title([alphatext(index+1,1),’x’]);

subplot(2,2,2);semilogy(f,2*abs(Y(1:NFFT/2+1,index)));

grid(’on’);

xlim([0,45]);

ylim(’auto’);

xlabel(’Frequency (Hz)’);

ylabel(’Power’);

title(’y’);

subplot(2,2,3);semilogy(f,XPSD(1:NFFT/2+1,index));

grid(’on’);

xlim([0,45]);

ylim(’auto’);

xlabel(’Frequency (Hz)’);

ylabel(’Power’);

title(’y’);

subplot(2,2,4);semilogy(f,YPSD(1:NFFT/2+1,index));

grid(’on’);

xlim([0,45]);

ylim(’auto’);

xlabel(’Frequency (Hz)’);

ylabel(’Power’);

title(’y’);

pause

end



121

APPENDIX C

POISSON CODE FOR SIMULATING BPM

The following text shows the Poisson Automesh file which defines the physical di-

mensions of the BPM can as well as the position of one of the antennae.

! Poisson Automesh file for creating an M20 Beam Position Monitor

&reg kprob=0, ! Poisson or Pandira problem

xjfact=0.0, ! Electrostatic problem

dx=0.01, ! Mesh interval for x direction

dy=0.01, ! Mesh interval for y direction

icylin=0, ! Cartesian coordinates

conv=1, ! Convert inches to centimeters

nbsup=0, ! Dirichlet boundary condition at upper edge

nbslo=0, ! Dirichlet boundary condition at lower edge

nbsrt=0, ! Dirichlet boundary condition at right edge

nbslf=0, ! Dirichlet boundary condition at left edge

ltop=10 & ! Maximum row number for field interpolation

!

! Draw the outer wall of the Beam Position Monitor centered at 0,0

&po x=4.2799,y=0.0 &

&po nt=2,x0=0.0,y0=0.0,r=4.2799,theta=90. &

&po nt=2,x0=0.0,y0=0.0,r=4.2799,theta=180. &

&po nt=2,x0=0.0,y0=0.0,r=4.2799,theta=270. &

&po nt=2,x0=0.0,y0=0.0,r=4.2799,theta=360. &

!

! Draw one of the four antennae centered at (0,2.45363)

&reg mat=0,voltage=1,ibound=-1 &

&po x=0.07874,y=2.45363 &

&po nt=2,x0=0,y0=2.45363,r=0.07874,theta=90. &

&po nt=2,x0=0,y0=2.45363,r=0.07874,theta=180. &

&po nt=2,x0=0,y0=2.45363,r=0.07874,theta=270. &

&po nt=2,x0=0,y0=2.45363,r=0.07874,theta=360. &
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