

The broad-band impedance budget in the accumulator ring of ALS-U project

Dan Wang

@ JLEIC impedance meeting

Aug. 20. 2019

Acknowledgment

AR Impedance Collaboration:

- Physics group: Marco Venturin, Stefano De Santis, Derun Li, Tianhuan Luo (LBNL)
- Engineering group: Michael Mardenfeld, Tom Miller (LBNL)
- Karl Bane (consultant) and Robert Warnock from SLAC

Rui Li from Jlab

Outline

- 1. Motivation of the study on broad-band (BB) impedance at ALS-U
- 2. Methods we are using
- 3. Broad band Impedance modeling
- Resistive wall
- Geometric
- 4. Total budget: longitudinal & transverse
- 5. Beam instability study due to broad band impedance
- Longitudinal threshold
- Transverse threshold
- 6. Discussion and Summary

Motivation and method

Introduction of the ALS-U project

- Update of the Advanced Light Source (ALS-U) to a multi-bend-achromat lattice as a 4th generation LS
- Provide a soft x-ray source that is up to 100–1,000 times brighter than today's ALS

Short-range wakefield/BB impedance in the ring

Source: resistive wall // geometric elements

Short-range wakefield/BB impedance in the ring

 Effect: deterioration of beam quality (bunch lengthening, tune shift, instability...) // overheat the vacuum chamber

limitation of beam intensity 🛞

[1] Energy spread increase when charge goes high due to BB impedance @ APS A. Blednykh, et., al., NAPAC2016, TUPOB51

[2] Local overheating image of flange joint at NSLS-II A. Blednykh, et., al., IPAC2019, TUPGW082

[3] Spring deformed and brazed to RF fingers @ LHC

E. Métral, et., al., IPAC2013, TUPWA042

Overview of the BB impedance study

- Essential part of accelerator design
- Similar oder of the impedance value for different facilities
- Discrepancy between measurement and calculation...

Workflow/method in the study

Close collaboration with vacuum engineers

*In the modeling we use both 5mm (nominal bunch length of designed beam) and 1mm drive beam (correspondent to impedance up to 100 GHz, to get the Pseudo-Green function in beam dynamics study) **The designed beam at ALS-U AR is 1.15nC

Impedance modeling

Identify the impedance source_1: resistive wall

 Resistive wall impedance is determined by the beam pipe dimensions, shape and materials

1 normal sector in the AR, 12 sectors in total

chamber type	VC	chamber ID	chamber profile across	total length	material
dipole chamber	3,5,7	$14 \times 40 \text{ mm}$	ellipse	$3\mathrm{m}$	aluminum
arc section	1,2,4,6,8,9	$28 \mathrm{mm}$	circular	$7.8\mathrm{m}$	stainless steel
straight section	10	$47 \mathrm{mm}$	circular	$4.2\mathrm{m}$	stainless steel

Identify the impedance source_1: resistive wall

 Resistive wall impedance is calculated with theoretical formulas with infinite thickness wall and DC conductivity [1-3]

RW impedance:

$$Z_{||}(\omega) = \frac{Z_0 \delta \omega}{4\pi bc} (\operatorname{sign}(\omega) - i) \times F_{YOKOYA}$$
$$Z_{\perp}(\omega) = \frac{Z_0 \delta}{2\pi b^3} (\operatorname{sign}(\omega) - i) \times F_{YOKAYA}$$

Chamber radius: *b*

Skin depth:
$$\delta = \sqrt{2/\mu_0 \sigma_c |\omega|}$$

 F_{YOKOYA} : geometric factor, Fy=0.83 and Fx = 0.43 for AR elliptical dipole chamber

$$\begin{aligned} & \textit{RW wakefield:} \\ & W_{||} = \frac{Z_0 c}{4\pi} \frac{1}{2b\sqrt{2Z_0 \mu_r \sigma_c}} \frac{1}{\sigma_z^{3/2}} f_z(s/\sigma_z) \\ & W_{\perp} = \frac{1}{b^2} \cdot \frac{Z_0 c}{4\pi} \frac{1}{2b\sqrt{2Z_0 \mu_r \sigma_c}} \frac{1}{\sigma_z^{1/2}} f_x(s/\sigma_z) \\ & \text{Drive beam bunch length:} \quad \sigma_z \\ & \text{Drive beam bunch distribution:} \quad \lambda \end{aligned}$$

- 1. A.Piwinski, Wakefield and ohmic losses in round vacuum chambers, 1992
- 2. K. Bane, The short range resistive wall wakefield, 1996
- 3. K. Yokoya, in Proceedings of International Conference on Particle Accelerators (IEEE, 1993), pp. 3441–3443

Identify the impedance source_1: resistive wall

• Resistive wall impedance results, by vacuum chamber type:

For nominal bunch length: $\sigma_z = 5$ mm:

Loss factor: 1.6 V/pC H-kick factor: 58.6 V/pC/m

V-kick factor: 72.2 V/pC/m

Identify the impedance source_2: geometric ones

Majority has been simulated

Per sector (12 sec	ctors in AR)	In the ring		
Component Quantity		Component	Quantity	
Flange	20	RF cavity	2	
Pump screen	4	Cavity transition	2	
Transition_DA	3	LFB kicker	1	
Transition_SA	1	LFB transition	1	
BPM	6	Stripline kicker	1	
Inline pump 4				
Bellow	7			

Pump screen

To be studied

BERKELEY L

Component	Quantity
Scraper	1
Injection kicker	2
Gate valve	4
TBD	TBD

ED PHYSICS DIVISION

Transition between chamber

Bellows with RF finger shielding

Flange with gasket

Solve the geometric impedance by CST Particle Studio

- Based on Finite Integration Technique (FIT). Calculating the wakefield in time domain. Deriving the impedance in frequency domain by the Fourier transform.
- Proper settings for boundary conditions, wakefield calculation methods and meshing sizes, convergence check.

Example: AR button BPM in CST with meshing

Solve the geometric impedance by CST Particle Studio

Different categories of the wakefield vs. CST results

Cross-checked with analytical as much as applicable

Good agreement on RF cavity loss factor

Loss factor by CST (in time domain):

$$\kappa = \int_{-\infty}^{\infty} ds \lambda(s) W_{||}(s)$$

Loss factor by Omega3P (frequency domain) +analytical:

$$\kappa_{||} = \frac{\kappa_{FM} + \kappa_{HOM} + \kappa_d}{1}$$

	$\sigma_z = 1 \text{ mm}$		$\sigma_z = 5 \text{ mm}$		
Method:	CST	Omega3P+analytical	CST	Omega3P+analytical	
Loss factor (V/pC)	1.97	2.41	0.98	1.08	

Below cut-off frequency, discrete eigenmodes (shunt impedances calculated by Omega3P)
 Above cut-off frequency, diffraction model formula

Cross-checked with analytical as much as applicable

• Good agreement on inductive impedance at low frequency^{*} $Z_{||} = -j\omega L$

Total budget

Longitudinal budget: 1

• Table: loss factor($\sigma_z = 5$ mm) and normalized impedance fitted by RL model

	Ouan	Singl	e compone	ent	S	um up	
Component	-tity	Loss factor	Re(Z/n)	lm(Z/n)	Loss factor	Re(Z/n)	lm(Z/n)
	,	V/pC	mΩ	mΩ	V/pC	mΩ	mΩ
Bellow	84	0.097	0.984	0.250	8.148	82.622	21.000
Cavity	2	0.980	9.930	-7.097	1.960	19.859	-14.193
Resistive wall	1	1.600	16.232	24.012	1.600	16.232	24.012
Transition_SD	12	0.041	0.413	2.109	0.492	4.959	25.311
LFB kicker	1	0.490	4.969	-3.383	0.490	4.969	-3.383
Transition_AD	36	0.004	0.018	0.871	0.144	0.660	31.369
BPM	72	0.0014	0.014	0.040	0.101	1.022	2.872
Cavity transition	2	0.088	0.898	1.973	0.176	1.796	3.946
Flange	240	0.00034	0.013	0.118	0.082	3.129	28.414
LFB transition	1	0.075	0.765	1.620	0.075	0.765	1.620
Arc pump screen	24	0.00058	0.006	0.129	0.014	0.142	3.104
Straight Pump screen	24	0.00057	0.006	0.098	0.014	0.139	2.340
Stripline kicker	1	0.0104	0.087	~ 0.000	0.010	0.087	~ 0.000
Inline pump	48	0.00012	0.001	0.032	0.006	0.059	1.545
Ring Total					13.3	136.4	128.0

 $\frac{Z}{n} = \frac{\omega_0 \sigma_z}{c} R + i \omega_0 L$

 $W_{R+L}(s) = -Rc\lambda(s) - c^2L\lambda'(s)$

Longitudinal budget: 2

Loss factor/ReZ dominated by bellows, cavity and RW; overall inductive ring

Longitudinal budget: 3

Sum of the short range wakefield

- $\sigma_z = 5$ mm wakefield: about the nominal bunch in AR.
- $\sigma_z = 1$ mm wakefield: serve as the pseudo-Green function.

Transverse budget: 1

Table: β-weighted effective impedance and tune shift

		ßx	ßv	Single cor (kQ	nponent 2)		Su	m		
Component	Quantity	(m)	שיק (m)	(β*Z _{eff})x	(β*Ζ _{eff})γ	(β*Z _{eff})x kΩ	(β*Z _{eff})y kΩ	Tune shift x *10 ⁻⁴	Tune shift y *10-4	
Transitions_AD	36	1.58	13.54	0.24	9.69	8.74	348.70	-0.068	-2.699	
RW_Arc section	1	6.57	12.17	15.34	28.42	15.34	28.42	-0.119	-0.220	
RW_Dipole	1	1.73	16.64	1.49	27.74	1.49	27.74	-0.012	-0.215	
Transitions_SD	12	15.0	5.85	4.88	1.90	58.53	22.83	-0.453	-0.177	
Flange	240	8.09	8.77	0.09	0.09	20.66	22.40	-0.160	-0.173	
Pump screen	48	14.65	5.5	0.03	0.36	1.33	17.17	-0.010	-0.133	
BPM	72	7.03	11.03	0.10	0.15	6.88	10.80	-0.053	-0.084	
Inline pump	48	8.85	3.88	0.28	0.12	13.31	5.62	-0.103	-0.043	
Bellow*	84	9.08	3.93	0.12	0.05	10.37	4.49	-0.080	-0.035	
Cavity	2	15.0	5.0	6.92	2.31	13.83	4.61	-0.107	-0.036	
Cavity transition	2	15.0	5.0	2.31	0.77	4.61	1.54	-0.036	-0.012	
LFB kicker	1	15.0	5.0	4.52	1.51	4.52	1.51	-0.035	-0.012	
RW_Straight section	1	15.0	5.0	3.99	1.33	3.99	1.33	-0.031	-0.010	
LFB transition	1	15.0	5.0	2.04	0.68	2.04	0.68	-0.016	-0.005	
Stripline kicker	1	15.0	5.0	0.51	0.17	0.51	0.17	-0.004	-0.001	
Ring total						166.18	498.00	-1.29	-3.85	

Transverse budget: 2

Main contribution, vertical, transition between dipole and arc (36 pairs, ID: 14-28mm)

Transverse budget: 3

Sum of the short range wakefield

- $\sigma_z = 5$ mm wakefield: about the nominal bunch in AR.
- Analytical estimation of vertical TMCI threshold >10nC/bunch (Marco)
- $\sigma_z = 1 \text{ mm}$ wakefield: serve as the pseudo-Green function.

Instability study

Longitudinal: microwave instability_1

ELEGANT simulation: onset of microwave instability at charge of ~11 nC

- 400 000 macro-particles in one bunch. Tracking for 20000 passes (~ $2\tau_{dz}$).
- Scan the bunch charges from 0 to 16 nC. Clear onset of microwave instability at ~ 11 nC >> 1.15 nC.

Longitudinal: microwave instability_2

• Simulation verified by solving Vlasov-Fokker-Planck (VFP) equation:

Courtesy of R. Warnock

Transverse instability

ELEGANT simulation: onset of transverse instability at charge of ~12 nC

• Scan the bunch charges, instability shows up at ~ 12 nC >> 1.15 nC.

Discussion: feedback on vacuum design

Recall the the bellows' model, from the CAD mode by vacuum group

- Loss factor = 97 mV/pC per bellows @ 5mm beam
- Quite resistive/large loss factor compared with pump screen 0.58mv/pC
- 72 bellows in total, contribute the largest Re(Z/n) in the budget

What cause such large loss factor?

What cause such large loss factor since the slots should be inductive?

• The 0.4mm gap in the model was not seen until we check the loss factor source...

34

Update the model with good contact/ proper assembling

BERKELEY I

- Loss factor from 97 mV/pC down to 6.3 mV/pC
- This also indicates the requirement of accuracy assembling of the RF finger shielding during the vacuum installation, also for avoiding of vacuum heating

If we can control the impedance of the bellows with RF fingers

Microwave instability threshold: slightly instability even up to 35nC

Low impedance flange with gasket_1

The low impedance gasket used is under development by ATLAS

https://www.atlasuhv.com/products/all-metal-uhv-seals-gaskets/copper-cf-rf-flare-gaskets/

h~0.5mm

37

shallow gap model in CST

 Fail to install, some mechanical problem...

Back to transitional gasket with a small cavity:

Low impedance flange with gasket_2

• Optimize the loss factor by scan parameters:

APPLIED PHYSICS DIVISION

BERKELEY L

Summary

Summary & Plan

- Broad band impedance of ALS-U AR have been extensively surveyed by numerical simulation and analytical formulas. Majority of the impedance sources have been analyzed.
- Based on the current impedance model, both ELEGANT tracking and VPF solution indicate the AR bunch charge is well below the threshold of the longitudinal single bunch instability (1.15 nC vs ~11 nC). Transverse single bunch instability study shows the instability threshold charge is 12nC.
- The total impedance model will be updated as rest of the vacuum components are included, as well as the bellows and flange models are revised
- The trapped modes will be investigated in components such as button BPM, bellow, etc. for multi-bunch instability study
- Longitudinal and transverse feed back system can be added into the study in the future

Many thanks!

SC1-05

Back ups

CST solves wake potential / not wake function

• More discussion on : short drive beam / long drive beam $Z_{||}(\omega) = -\frac{\int_{-\infty}^{\infty} W_{||}(s)e^{-j\omega s}ds}{\int_{-\infty}^{\infty} \lambda(s)e^{-j\omega s}ds}$

Structure characteristic: impedance in frequency domain / wake function or Green function in time domain $Z(\omega)$ / G(s)

Wake potential: convolution in time domain / production in frequency domain

 $Z(\omega) \times F(\omega) \sim G(s) \circledast \lambda(s)$

The from factor of a Gaussian drive beam: $F(\omega) = \int_{-\infty}^{\infty} ds \lambda(s) e^{-j\omega s} = \exp(-\omega^2 \sigma_z^2/2c^2)$

Cut-off frequency of calculation in CST

 $f_c [GHz] \cdot = 100/\sigma_z [mm]$

• Careful choose drive beam bunch length 1/5 or 1/10 of that of real beam in the ring

CST with proper settings

 Use it with right setting, such as boundary condition/ mesh size / integration method

- Background: PEC / normal
- Boundary: $E_t = 0$ in X&Y || open in Z
- Suggest mesh set [1,2]: $100 \le \frac{a\phi}{\Delta z} \cdot \frac{\sigma_z}{\Delta z}$
- Wakefield integration method: solve the infinity integration in a bright / indirect way (instead of direct one)[3] $W_{||}(x, y, s) = -\frac{1}{q} \int_{-\infty}^{\infty} dz E_z(x, y, z, \frac{s+z}{c})$

[1] Victor Smaluk, et.a., PRAB,17,074402,2014

- [2] O. Tanaka, et.al., Journal of Physics: Conference Series, 1067, 062008, 2018
- [3] Igor Zagorodnov, Indirect methods for wake potential integration, PRAB, 9, 102002, 2006

CST server at LBL

Cores:12, logical processors: 24; maximum meshcells~1.5 billon (our RF cavity, with mesh size 100 um)

45

Fewer details 0 Open Resource Monitor

Theory of cavity wakefield and loss factor

model of RI cavity

For a resonant cavity in a storage ring, κ_{\parallel} is given by a sum over modes up to the cut-off frequency, plus a high frequency diffraction contribution (diffraction model [8] also Sec.3.2.4)

$$\kappa_{||} \approx \frac{\Gamma(1/4)Z_0 c}{4\pi^{5/2}b} \sqrt{\frac{g}{\sigma_z}} = 1.08 V/pC$$
 (from handbook)

[8] K. Bane and M. Sands. Wakefield of very short bunches in an accelerating cavity, 1987 $\kappa_{||,d} = \frac{Z_0 c}{4\pi^{5/2} b} \sqrt{\frac{g}{\sigma_z}} * (\Gamma(1/4) - 4\sqrt{\omega_c \sigma_z/c}) = 0.4V/pC \quad \text{(from [8])}$ The one free bandle objective constants form can $\sigma = 5$ mm

The one from handbook is a asymptotic form as : $\sigma_z \rightarrow 0$; Our beam: $\sigma_z = 5 \ mm$

• Diffraction model, start from the pillbox cavity edge, can be applied to calculate the loss factor that count the modes above frequency. This valid when [8]: $(g + 4\sigma_z) * 4\sigma_z < (h - b)^2$

$$\kappa_n = \frac{\omega_n}{4} (\frac{R}{Q})_n F(\omega_n, \sigma_z)$$

[1]. Thomas Wangler, Principles of RF linear accelerators, 1937, p295-p299.

Theory of cavity wakefield and loss factor

Table of 14 modes with largest loss factor bellow cut-off frequency (~3.1 GHz)

No.	Frequency f (GHz)	R/Q*	loss factor V/pC
1(fm)	0.5208	241.0060	0.1966
2	0.6762	104.2300	0.1102
3	1.3242	23.2839	0.0475
4	1.5873	15.5068	0.0376
5	1.0680	15.0499	0.0249
6	2.2690	7.3617	0.0248
7	1.9610	7.7516	0.0229
8	1.5190	9.7950	0.0228
9	1.9152	7.8738	0.0228
10	2.1734	5.7740	0.0187
11	2.4194	3.9011	0.0139
12	2.0691	1.9336	0.0060
13	2.3764	0.7288	0.0026
14	1.2676	0.2743	0.0005

*From Tianhuan's simulation

Theory of cavity wakefield and loss factor

Resistive wall in dipole chamber with Yokoya's factor

- Because a>b, using impedance /wakefield of round chamber with r = b is an over-estimate for all directions
- Yokaya's factor F [1]:

$$F = Z_{ellipse}/Z_{round}(r = b)$$

- Fy, dipole = 0.83;
- Fx, dipole = 0.43

[1] Yokoya, K, Resistive wall impedance of beam pipes of general cross section, 1993
[2] A. Chao, et.al., Tune shifts of bunch trains due to resistive vacuum chambers without circular symmetry, 2002
[3] T. F. Gunzel, Transverse coupling impedance of the storage ring at the European Synchrotron Radiation Facility, 2006

Impedance of flanges: theory to be study

$$Z_{\parallel}(\omega) = \frac{gZ_0}{\pi b I_0^2(\bar{b})D},$$
(1)

with

$$D = j \frac{R'_0(kb)}{R_0(kb)} - 2jk \left[\sum_{s=1}^{S} \frac{1}{\beta_s^2 b} \left(1 - e^{-j\beta_s g} \frac{\sin \beta_s g}{\beta_s g} \right) - \sum_{s=S+1}^{\infty} \frac{1}{\alpha_s^2 b} \left(1 - e^{-\alpha_s g} \frac{\sinh \alpha_s g}{\alpha_s g} \right) \right].$$
(2)

"Diffractive grating structure for coherent light source production", 2009

"Point charge passing a resonator with beam tubes", 1986

Geometry impedance sources, such as:

Small ones may be the trouble makers !

K.Y. Ng, "Impedance Issue of Corrugated Beam Pipe from CDF", FERMILAB-TM-1847 (1993) Karl Bane, "Impedance Calculation and Verification in Storage Rings", SLAC-PUB-1007, 2005

Now, use CST to simulate each component

• Know your tools before using it:

Drive beam with certain distribution $\lambda(s)$ Solve 3D electromagnetic field in time domain Calculate the wake potential with integration:

$$W_{||}(x, y, s) = -\frac{1}{q} \int_{-\infty}^{\infty} dz E_z(x, y, z, \frac{s+z}{c})$$

Transverse wake potential from Panovsky-Wenzel theorem

$$W_{\perp}(x, y, s) = -\Delta_{\perp} \int_{-\infty}^{s} ds' W_{||}(x, y, s')$$

Impedance from FFT, calculation range decided by the drive beam distribution:

$$Z_{||}(\omega) = -\frac{\int_{-\infty}^{\infty} W_{||}(s)e^{-j\omega s}ds}{\int_{-\infty}^{\infty} \lambda(s)e^{-j\omega s}ds} \leftarrow FFT \text{ of wake potential}$$
FFT of beam distribution, from factor

Results from CST for different components

0.008

0.006

1D Results\Particle Beams\ParticleBeam1\Wake potential

s / mm

BERKELEY LAB

ACCELERATOR TECHNOLOGY &

APPLIED PHYSICS DIVISION

Check our CST simulations

Handbook is always there (most valid for low frequency)

Small inductive objects-2D: [27, 30] small cavities, shal- low irises, and transi- tions at low freq. $(h \ll b, k \ll 1/h);$ h is height of object, g is gap of cavity or length of iris; \mathcal{L} is inductance. For tapered transition pair: θ is taper angle.	$Z_0^{\parallel} = -ikc\mathcal{L}, Z_1^{\perp} = \frac{2}{b^2k}Z_0^{\parallel}$ Pill box $g \lesssim h \ll b$: \mathcal{L} Shallow iris $g \lesssim h \ll$ Transition pair $g \gg h, h \ll b$: Tapered : $\mathcal{L} = \frac{Z_0 h^2}{\pi^2 cb} \left[\ln\left(\frac{b\theta}{h} - 2\theta \cot\theta\right) \right]$ $\gamma_e \approx 0.57721$ is Euler's constant, $\psi(x)$	$W_0' = -c^2 \mathcal{L}\delta'(z), \ W_1 = \frac{2}{b^2} \int W_0' dz$ $= \frac{Z_0}{2\pi cb} \left[gh - \frac{g^2}{2\pi} \right] \qquad \qquad$	CST analysis CST analysis CST analysis Flange with gasket (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
Roundcollimator:(a) [40] low frequencycy $k \ll 1/d$.	$Z_1^{\perp} = -0.3i \frac{Z_0}{d}$ collimator radius $d \ll b$.	$W_1 = -0.3 \frac{Z_0 c}{d} \delta(z)$ collimator radius $d \ll b$.	40 35 -
(b) High frequency $k \gg 1/d$; if tapered, angle $\theta \gg 1/(kd)$.	See optical model formulae (a) above	;	30 CS ²⁵ CS ²⁵
(c) [41] For any frequency, small angle, $d'(s) \ll 1$, $kdd' \ll 1$, with $d(s)$ pipe pro- file versus longitudinal position s , and d' is derivative of d with re- spect to s .	$Z_0^{\parallel} = \frac{-iZ_0k}{4\pi} \int ds (d')^2$ $Z_1^{\perp} = \frac{-iZ_0}{2\pi} \int ds \left(\frac{d'}{d}\right)^2$ $\Rightarrow \text{ symm. tapers of angle } \theta \ll 1:$ $Z_1^{\perp} = \frac{-iZ_0}{\pi} \theta \left(\frac{1}{d} - \frac{1}{b}\right)$	$W_0' = \frac{Z_0 c}{4\pi} \int ds (d')^2 \delta'(z)$ $W_1 = -\frac{Z_0 c}{2\pi} \int ds \left(\frac{d'}{d}\right)^2 \delta(z)$ $W_1 = -\frac{Z_0 c}{\pi} \theta \left(\frac{1}{d} - \frac{1}{b}\right) \delta(z)$	$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Check our CST simulations

Handbook is always there (most valid for low frequency)

Add up to get the impedance budget

Longitudinal wakefield and impedance

Total budget: $|Z/n| = 0.13 \ \Omega$

Boussard criterion (very rough estimation):

$$Q_{th} = (2\pi)^{3/2} \frac{\alpha \sigma_z E \sigma_\delta^2}{c |Z/n|} \longrightarrow Q_{th} = 3.25 \ nC > 1.15 \ nC \ (AR) \text{ or } |Z/n|_{th} = 0.37 \ \Omega(AR)$$

Are we really safe?

Category of the wakefield / impedance

Example of resistive by short bunch / inductive by long bunch

non-shiled bellows

driven by 1mm beam

driven by 5mm beam

