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Introduction



Comments on impedance analysis
• The beam current of the CCR of the JLEIC is 0.76A (assuming CW modes). 

• Due to beam loading with relatively high current, the power to maintain a constant 

kick voltage of the deflecting modes in the harmonic kicker cavity could increase 

dramatically. 

• The dissipated power by the HOM’s is also of concern. The transverse field of a 

High-QL mode could degrade beam quality.  

•  The goal of this study would be estimate the effects of beam loading and determine 

whether HOM damper for the kicker is needed. 

• The study is an example of impedance analysis of transverse modes with beam 

current driven at different frequency from resonant frequency. 

•  The time structure of the beam current has gaps in otherwise CW mode (can be 

viewed as pulsed mode).  

•  Having a conclusion that induced power is not severe and HOM damper would 

not be needed, stability issues was not investigated. 



Time structure of beam current in CCR
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HOM



• How much power would be induced by beam current?

Issues on HOM impedance

- Power splits to dissipation power on the kicker cavity wall and emitted power 
delivered to RF system. 

- How does power change with respect to misalignment of the beam?

• Would transverse field by induced high-QL HOM degrade beam quality?



• The general analytical formula for induced voltage by nth mode in the cavity is  

2.5. Wake fields and impedance 103

To investigate response of the cavity to beam independent of R/Q0 at each frequency,
the normalized voltage Vn per R/Q0 is given as

Vn,nor =
Vn

R/Q0
=

!n

2

Qb

lb
ce(i!n�1/⌧n)t

X

k

(2.177)

The induced voltage after N bunches is given as

Vn = Vq + Vqe
(i!n�1/⌧n)(t�t0) + · · ·Vqe

(i!n�1/⌧n)(N�1)(t�t0)

= Vq
1� e(i!n�1/⌧n)N (t�t0)

1� e(i!n�1/⌧n)(t�t0)
(2.178)

Consequently, the total power, i.e., the power generated by beam that is the same
as a sum of wall loss and power leakage through the ports, is given as

Pn(t) =
V 2
n (t)

QL ·Rk,n/Q0
(2.179)

The normalized power is given as

P

Rk/Q0
=

Vk(t)2

QL ·
�
Rk,n/Q0

�2 =
V 2
n,nor(t)

QL
(2.180)

Furthermore, average power Pave is computed as

Pave =
1

T

Z 1/fb

0

dt P (t) (2.181)

2.5.1.2 Impedance from wake potential

2.5.2 Simulation study of Higher order modes (HOM)

2.5.2.1 Setup and methods

To evaluate the power, one first determines a collection of the relevant modes in
power evaluation. The more modes are included, the better becomes the evaluation,
but simulation time rapidly increases as the number of the modes increases. The
relevant modes are determined by beam current structure.

• Prepare macro file that computes figures of merit for all the HOM’s of interest.
Import it to the CST.

• Run the CST simulation. After the simulation run the macro file.

• Export the result and import to MATLAB, whose script plots the result.

Vn is induced voltage across the cavity, kn is loss factor by a single charge, I is beam current, 𝜔n is 
angular frequency of the mode, and 𝜏n is decay time of the cavity. 

2.5. Wake fields and impedance 101

2.5 Wake fields and impedance

In this section, we evaluate the power dissipation due to the fields excited by beam
with certain time structure, in particular higher order modes (HOM). The method
we are using is to derive analytical formula for the power by each induced wake
field from the beam. The spectrum of induced wake modes can be obtained by two
simulations, one by eigensolver and the other by wake field solver. Also available
from the simulation are R/Q0 and QL for each mode. Finally total power can be
added by simply adding up the contribution from all the relevant modes.

2.5.1 Theoretical background

2.5.1.1 The voltage and power induced by beam

The induced voltage in the cavity via nth mode by the point charge q traversing
the cavity at t = t0 is given as

Vn(t) = 2knqe
(i!n�1/⌧n)(t�t0)H(t, t0),

where kn is loss factor, !n is resonant frequency, ⌧n is decay time of the cavity of n
mode, respectively. Also H(t) is a unit step function, whose representation is given
as

H(t, t0) =

Z t

�1
dt00 �(t00 � t0) (2.164)

Note that t = t0 is chosen at the moment the charge exits the cavity. From point
charge case, di↵erential charge case is written as

dVn(t, t
0) = 2kndq(t

0)e(i!n�1/⌧n)(t�t0)H(t, t0), (2.165)

Integrating (2.165) with respect to t0, we have

Vn(t) = 2kne
(i!n�1/⌧n)t

Z t

�1
dt0 I(t0)e�(i!n�1/⌧n)t0H(t, t0) (2.166)

Vn(t) = 2kne
(i!n�1/⌧n)t

Z t

�1
dt0 I(t0)e�(i!n�1/⌧n)t0 (2.167)

For more convenient computation, one can divide up integration range into bunch
distance 1/fb.

Vn(t) = 2kne
(i!n�1/⌧n)t

1X

k=�1

Z (k+1)/fb

k/fb

dt0 I(t0)e�(i!n�1/⌧n)t0H(t, t0) (2.168)

HOM power analysis

• The total power formula by n-th mode in the cavity and total average power are  

2.5. Wake fields and impedance 103

To investigate response of the cavity to beam independent of R/Q0 at each frequency,
the normalized voltage Vn per R/Q0 is given as

Vn,nor =
Vn

R/Q0
=

!n

2

Qb

lb
ce(i!n�1/⌧n)t

X

k

(2.177)

The induced voltage after N bunches is given as

Vn = Vq + Vqe
(i!n�1/⌧n)(t�t0) + · · ·Vqe

(i!n�1/⌧n)(N�1)(t�t0)

= Vq
1� e(i!n�1/⌧n)N (t�t0)

1� e(i!n�1/⌧n)(t�t0)
(2.178)

Consequently, the total power, i.e., the power generated by beam that is the same
as a sum of wall loss and power leakage through the ports, is given as

Pn(t) =
V 2
n (t)

QL ·Rk,n/Q0
(2.179)

The normalized power is given as

P

Rk/Q0
=

Vk(t)2

QL ·
�
Rk,n/Q0

�2 =
V 2
n,nor(t)

QL
(2.180)

Furthermore, average power Pave is computed as

Pave =
X

n

Pn,ave =
X

n

1

T

Z 1/fb

0

dt Pn(t) (2.181)

2.5.1.2 Impedance from wake potential

2.5.2 Simulation study of Higher order modes (HOM)

2.5.2.1 Setup and methods

To evaluate the power, one first determines a collection of the relevant modes in
power evaluation. The more modes are included, the better becomes the evaluation,
but simulation time rapidly increases as the number of the modes increases. The
relevant modes are determined by beam current structure.

• Prepare macro file that computes figures of merit for all the HOM’s of interest.
Import it to the CST.

• Run the CST simulation. After the simulation run the macro file.

• Export the result and import to MATLAB, whose script plots the result.

Available from eigenmode solver 
simulation in CST-MWS
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Setup for impedance simulation

Frequency range was set to be  

  fmax = 2.5 GHz (cut off frequency of the beam ports) 
 𝛥f < 68 kHz (bandwidth of the lowest HOM) 

tmax > 15𝜇s (smax > 4.5 km ) 
Due to simulation time, tmax=8.34 𝜇s (smax =2.5 km )  
𝛥t = 4ps (𝜎 = 2cm)

On-axis Off-axis ACE3P

Beam size 𝜎 6cm 2cm 3cm

Wall material PEC PEC PEC

Beam position 35mm 45mm/25mm 45mm/25mm

Bunch charge 1 nC ±1nC ±1nC

Mode 7 : f = 851.5 MHz, QL = 12600

bunch beam axis

Excites only monopole field of each 
mode

bunch2

Excites only dipole field of each mode, 
doubling its magnitude

bunch1

beam axis

+q

+q
- q
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• the peak locations in (real) impedance spectrum are identified with resonant 
frequencies and the peak values are the effective shunt impedance, which is more 
accurately evaluated by CST-MWS (Eigensolver).  

Impedance spectrum (real value) by charge on beam axis

Re [ Z ] = Qe× Rlong/Q0 

TEM: higher harmonic modes, TE11-hor., TE11-ver.

TEM: 5 harmonic modes for kick
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• The resolved values of impedance (using Daerun Li’s technique) approaches close 
to those obtained by Eigensolver, but still there exits a factor of  3~5 difference 
between the two.

Evaluation accuracy of impedance spectrum
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• Loss factor is evaluated as

The impedance Z in (38) is an implicit function of transverse coordinates ~r. With (35) and
(38), we can expand the beam coupling impedance in terms of multipole fields, each of which
can be selectively excited by a particular arrangement of distribution of charges. The expansion
is given as

Z(!) =
X

m<0

am(!)rmeim� (39)

Because () is charge distribution dependent, we must choose appropriate distribution to extract
the dominant contribution to Z. Near the beam axis, the dominant term is monopole term,
which can be excited by charge on beam axis.

Power and loss factor is computed as

k =
2

q2

Z 1

0
d!Re[Z(!)]I2(!) (40)

In case one wants to

8.3 Panofsky-Wenzel theorem

From

�p? = i
c

!

Z
dzr?Ez (41)

l.h.s = q
Z
dz

h
E + cẑ ⇥B

i

?
= q2�xW?, (42)

r.h.s = i
c

!
q2r?Wk (43)

W? = i
c

!�x
r?Wk (44)

Upon Fourier transform, we have

Z? =
c

!�x
r?Zk (45)

Using Panofsky-Wenzel theorem (), we can evaluate transverse impedance on beam axis from
simulation data collected at r = r1 + r2.

Z?(r1 + r2) = � 1

kr1

1

r2

h
Zk(r1)� Zk(r1 + r2)

i
(46)

Zk(r1) = �kr1r2Z?(r1 + r2) + Zk(r1 + r2) (47)

Then the impedance on beam axis is given as

Z?(0) =
1

kr1

1

r1

h
Zk(r1)� Zk(0)

i

=
1

kr21

h
� kr1r2Z?(r1 + r2) + Zk(r1 + r2)� Zk(0)

i
(48)

The energy lost to the charge is given as

U = 2
Z 1

0
d!Re[Z(!)]I2(!) (33)

In case of discrete spectrum of I, () becomes

= 2
X

n

Re[Z(!n)]I
2(!n) (34)

Table 3: The parameters for wakefield simulation.

Parameters Unit Single-beam Two-beam

bunch profile - Gaussian Gaussian
bunch length cm 6 2
bunch charge nC 1 1
wake length km 2 2.5
beam position mm 0 ± 10
loss factor ⌦
Power W 10 10

86 88 90 92 94 96 98 100
 b (mm)

0.2

0.25

0.3

0.35

0.4

5000

5500

6000

6500

7000

7500

8000

X: 98
Y: 0.26
Level: 4876

X: 88
Y: 0.34
Level: 5685

4 mm

3.5 mm

(a) The power distribution over parameter scanning of a, b.

The red dotted line is a rough threshold boundary of TE11

modes.

(b) The electric field of TE11

mode.

Figure 3 – Power optimization with constraints.

5 Auxiliary component design

5.1 Tuning system

The stub tuners are individually motorized by the step motors mounted on the stations as
shown in Fig. 10. Between the stubs and tuner port, there is gap of 1mm to have room for
sliding motion.

5.2 Transmission line matching

The transmission line of the coupler is based on standard EIA 3-1/8 co-axial cable (with 50⌦)
with double windows. This is connected to the cavity with elbow for easier installation.
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Similar relation exists for the beam2, i.e.,

Z�q
? (0) =

c

!

1

r1

h
� Z�q

k (�r2) +
!

c
(r1 � r2)Z

�q
? (�r2) + Z�q

k (0)
i

(2.222)

Therefor total wake potential is

Z?(0) = Z+q
? (0) + Z�q

? (0)

=
1

r1

h
Z+q

k (r2)� Z�q
k (�r2) + (r1 � r2)(Z

+q
? (r2) + Z�q

? (r2)) + Z+q
k (0)� Z�q

k (0)
i

(2.223)

If both monitors collect the wake potential from both beams, we have from (2.221),

Z?(0) =
1

r1

h
Zk(r2) + (r1 � r2)Z?(r2)� Zk(0)

i
(2.224)

Furthermore, if we use dipole wake potential with unit of ⌦/m, we have dipole
wake potential by charge q at r0 at r as

W?(s, r) = � 1

qr0

Z
dz (E + ẑ ⇥ ~B

⌘

?
(z, r, t)

���
t= z+s

c

(2.225)

and the corresponding impedance

Z? = � i

c

Z
dz W?(s, r)e

i!sc (2.226)

Then Panofsky-Wenzel theorem

Z?(s, r) =
1

kr0
r?Zk (2.227)

Then

Z?(s, 0) =
1

kr21

h
Zk(s, r1)� Zk(s, 0)

i
(2.228)

On the other hand,

Z?(s, r1 + r2) =
1

�kr1r2

h
Zk(s, r1)� Zk(s, r1 + r2)

i
(2.229)

Solving fro Zk(s, r1), we have

Zk(s, r1) = �kr1r2Z?(s, r1 + r2) + Zk(s, r1 + r2) (2.230)

Inserting

Z?(s, 0) =
1

kr21

h
� kr1r2Z?(r1 + r2) + Zk(s, r1 + r2)� Zk(0)

i
(2.231)

q

-q

monitor 1

monitor 2

r1=10 mm

r2= 10 mm

Transverse impedance spectrum (real value) by charge off axis
• The wake field is excited by a pair of charges off axis, with positive charge above 

and negative charge below by the same offset. 
• This configuration excites only dipole (longitudinal) field of each mode, equivalent 

to the transverse mode by PW theorem.

The impedance Z in (38) is an implicit function of transverse coordinates ~r. With (35) and
(38), we can expand the beam coupling impedance in terms of multipole fields, each of which
can be selectively excited by a particular arrangement of distribution of charges. The expansion
is given as

Z(!) =
X

m<0

am(!)rmeim� (39)

Because () is charge distribution dependent, we must choose appropriate distribution to extract
the dominant contribution to Z. Near the beam axis, the dominant term is monopole term,
which can be excited by charge on beam axis.

Power and loss factor is computed as

k =
2

q2

Z 1

0
d!Re[Z(!)]I2(!) (40)

In case one wants to

8.3 Panofsky-Wenzel theorem

From

�p? = i
c

!

Z
dzr?Ez (41)

l.h.s = q
Z
dz

h
E + cẑ ⇥B

i

?
= q2�xW?, (42)

r.h.s = i
c

!
q2r?Wk (43)

W? = i
c

!�x
r?Wk (44)

Upon Fourier transform, we have

Z? =
c

!�x
r?Zk (45)

Using Panofsky-Wenzel theorem (), we can evaluate transverse impedance on beam axis from
simulation data collected at r = r1 + r2.

Z?(r1 + r2) = � 1

kr1

1

r2

h
Zk(r1)� Zk(r1 + r2)

i
(46)

Zk(r1) = �kr1r2Z?(r1 + r2) + Zk(r1 + r2) (47)

Then the impedance on beam axis is given as

Z?(0) =
1

kr1

1

r1

h
Zk(r1)� Zk(0)

i

=
1

kr21

h
� kr1r2Z?(r1 + r2) + Zk(r1 + r2)� Zk(0)

i
(48)

Z?(s, 0) =
1

k(r1 + r2)r1

⇣
Zk(r1 + r2)� Zk(0)

⌘
(49)

In pure dipole field, 
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Transverse impedance spectrum (real value) by charge off axis
• Unlike elliptical cavities, the same modes are excited by off-axis charges (as those 

by on axis charges).  

P = 
k =

TEM: higher harmonic modes, TE11-hor., TE11-ver.

Re [ Z⊥ ] /𝛥x = Qe× R⊥/Q0 /𝛥x
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Transverse impedance spectrum (real value) by charge off axis:  
Comparison with ACE3P results

• The peak values of ACE3P are much lower in deflecting modes but similar in HOM’s. 

TEM: 5 harmonic 
modes for kick TEM: higher harmonic modes, TE11-hor., TE11-ver.
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• In wake field simulation, the locations of the peaks in (absolute) impedance 
spectrum were identified with resonant frequencies and the peaked values were 
with the shunt impedance, which is more accurately computed by CST 
Eigensolver.  .  

Impedance spectrum (absolute value) by charge on beam axis


