Beam loading study of the harmonic kicker

April 21 2019 Gunn Tae Park SRF R&D, Accelerator division

Contents

- 1. Introduction
- 2. Deflecting modes
- 3. HOM
- 4. Conclusion

Introduction

Comments on impedance analysis

- The beam current of the CCR of the JLEIC is 0.76A (assuming CW modes).
- Due to beam loading with relatively high current, the power to maintain a constant kick voltage of the deflecting modes in the harmonic kicker cavity could increase dramatically.
- The dissipated power by the HOM's is also of concern. The transverse field of a High- Q_L mode could degrade beam quality.
- The goal of this study would be estimate the effects of beam loading and determine whether HOM damper for the kicker is needed.
- The study is an example of impedance analysis of transverse modes with beam current driven at different frequency from resonant frequency.
- The time structure of the beam current has gaps in otherwise CW mode (can be viewed as pulsed mode).
- Having a conclusion that induced power is not severe and HOM damper would not be needed, stability issues was not investigated.

Time structure of beam current in CCR

Deflecting modes

Phasor diagram

HOM

Issues on HOM impedance

- How much power would be induced by beam current?
- Power splits to dissipation power on the kicker cavity wall and emitted power delivered to RF system.
- How does power change with respect to misalignment of the beam?
- Would transverse field by induced high-Q_L HOM degrade beam quality?

HOM power analysis

• The general analytical formula for induced voltage by *n*th mode in the cavity is

$$V_n(t) = 2k_n e^{(i\omega_n - 1/\tau_n)t} \int_{-\infty}^t dt' I(t') e^{-(i\omega_n - 1/\tau_n)t'}$$
Available from eigenmode solver simulation in CST-MWS

 V_n is induced voltage across the cavity, k_n is loss factor by a single charge, I is beam current, ω_n is angular frequency of the mode, and τ_n is decay time of the cavity.

• The total power formula by n-th mode in the cavity and total average power are

$$P_n(t) = \frac{V_n^2(t)}{Q_L \cdot R_{\parallel,n}/Q_0} \qquad P_{ave} = \sum_n P_{n,ave} = \sum_n \frac{1}{T} \int_0^{1/f_b} dt \, P_n(t)$$

Setup for impedance simulation

Impedance spectrum (real value) by charge on beam axis

• the peak locations in (real) impedance spectrum are identified with resonant frequencies and the peak values are the effective shunt impedance, which is more accurately evaluated by CST-MWS (Eigensolver).

Evaluation accuracy of impedance spectrum

 The resolved values of impedance (using Daerun Li's technique) approaches close to those obtained by Eigensolver, but still there exits a factor of 3~5 difference between the two.

• Loss factor is evaluated as

$$k = \frac{2}{q^2} \int_0^\infty d\omega \, Re[Z(\omega)] I^2(\omega) \qquad \qquad U = 2 \int_0^\infty d\omega \, Re[Z(\omega)] I^2(\omega)$$

 $k_{loss} = 0.02 \, \text{V/mC}$ (for single lower)

Transverse impedance spectrum (real value) by charge off axis

- The wake field is excited by a pair of charges off axis, with positive charge above and negative charge below by the same offset.
- This configuration excites only dipole (longitudinal) field of each mode, equivalent to the transverse mode by PW theorem.

$$Z_{\perp}(s,0) = \frac{1}{kr_1^2} \Big[-kr_1r_2Z_{\perp}(r_1+r_2) + Z_{\parallel}(s,r_1+r_2) - Z_{\parallel}(0) \Big]$$

In pure dipole field,

$$Z_{\perp}(s,0) = \frac{1}{k(r_1 + r_2)r_1} \Big(Z_{\parallel}(r_1 + r_2) - Z_{\parallel}(0) \Big)$$

Transverse impedance spectrum (real value) by charge off axis

• Unlike elliptical cavities, the same modes are excited by off-axis charges (as those by on axis charges).

Transverse impedance spectrum (real value) by charge off axis: Comparison with ACE3P results

• The peak values of ACE3P are much lower in deflecting modes but similar in HOM's.

Cut off freq. of beam port

Impedance spectrum (absolute value) by charge on beam axis

• In wake field simulation, the locations of the peaks in (absolute) impedance spectrum were identified with resonant frequencies and the peaked values were with the shunt impedance, which is more accurately computed by CST Eigensolver.

TEM: higher harmonic modes TE11-ver. TE11-hor.