

Status of IR Chamber Impedances Analyses (Status May 2019)

F. Marhauser

JLEIC IR Chamber Version History

2

FCC IR Beam Pipe Geometry

Version 1

U.S. DEPARTMENT OF

Version 4

ltem	ID mm	f _c TE ₁₁ (-like)	f _c TM ₀₁ (-like)
unit	mm	GHz	GHz
 e- entrant and exit tube ion exit tube central IR chamber 	60	2.93	3.83
ions inlet	40	4.39	5.74
transition chamber (ion entrant tube)	n/a	1.60 pol. l 2.90 pol. ll 3.08 (TE20-like) 3.24	3.22
transition chamber (e- entrant tube)	n/a	2.327 pol. I & II	3.50 (TE ₂₁) 3.54
			Jefferson Lab

Trapped Modes

Alexander Novokhatski

SLAC National Accelerator Laboratory

JLEIC Spring Collaboration Meeting April 1, 2019

Loss factor – Electron Path

Electron Ring Beam Spectrum

Electron Ring Real Impedance

Electron ring: 2366 m, 476.3 MHz, 3.6 A, 267 bucket gap

Up to 9.5 GHz sum of 9.2 kW power deposited by electrons

Electron ring: 2366 m, 476.3 MHz, 3.6 A, NO GAP

Up to 9.5 GHz sum of 9.9 kW power deposited by electrons

Electron ring: 2366 m, 476.3 MHz, 3.6 A, NO GAP

Up to 9.5 GHz sum of 9.9 kW power deposited by electrons

Simulations for lons to be done with proper model

$T_b \simeq 2.1$ ns at 476.3 MHz, $I_{avg} = 0.75$ A

Tilted model – model failed to simulate wakefield !

Particle beam "ParticleBeam1" is outside the calculation domain due a symmetry plane. It will be ignored for the simulation.

Re-Modelling ?

extrude

interference

SJSA

U.S. DEPARTMENT OF

1

HOM Absorbers Needed?

Primary concept of the HOM absorber for FCC ee

Alexander Novokhatski

SLAC National Accelerator Laboratory

JLEIC Spring Collaboration Meeting April 1, 2019

HOM absorber design for 10 kW power

The absorber vacuum box is situated near (around) beam pipe connection. Inside the box we have ceramic absorbing tiles and copper plates (walls). The beam pipe in this place have longitudinal slots, which connect the beam pipe and the absorber box. Outside the box we have stainless steel water-cooling tubes, braised to the copper plates.

HOM fields, which are generating by the beam in the IR have a transverse electrical component and can pass through the longitudinal slots in the beam pipe.

Inside the absorber box these fields are absorbed by ceramic tiles, which have high value of the loss tangent.

Ceramic tiles are braised to copper plates with columns. The heat from ceramic tiles is transported through the copper plates to water cooling tubes.

Efficiency of Damping Trapped and Propagating Modes

Alexander Novokhatski

SLAC National Accelerator Laboratory

Shielded Bellows

JLEIC Spring Collaboration Meeting April 1, 2019

Wake fields discharge in shielded fingers of vacuum valves

• Shielded fingers of some vacuum valves were destroyed by breakdowns of intensive HOMs excited in the valve cavity.

HOM absorber for IR of PEP-II

Wave Impedance of Different Chamber Cross-Sections

Item	ID mm	Wave impedance @ 3 GHz TE ₁₁ (-like)	Wave impedance @ 3 GHz TM ₀₁ (-like)
unit	mm	Ω	Ω
 e- entrant and exit tube ion exit tube central IR chamber 	60	1722	299
ions inlet	40	351	617
transition chamber (ion entrant tube)	n/a	446/1522	156
transition chamber (e- entrant tube)	n/a	597 pol. I & II	237

