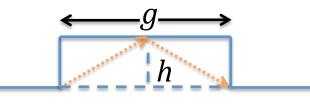
Overview of Diffraction Model of Broadband Impedance for RF Cavities

Rui Li JLEIC Impedance Meeting 4-22-2019

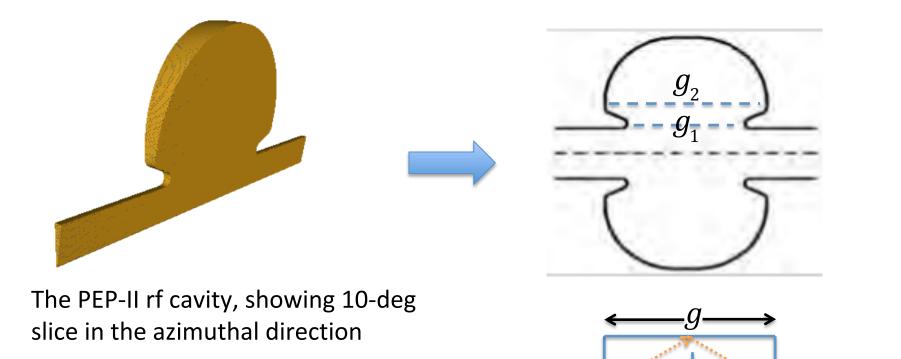
Outline

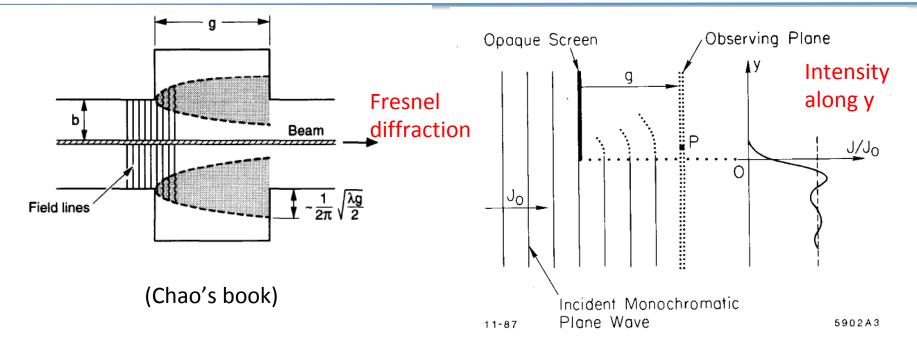
- Simplification of 3D RF cavity modeling
- Diffraction model of impedance for a pillbox cavity
- Longitudinal broadband impedance for a pillbox cavity
- Comparison of theory with simulations



- For the broadband impedance, 3D RF geometry can be modeled by cylindrically symmetric pillbox model
- Diffraction theory for impedance can be applied to pillbox model
- Diffraction results depicts the average behavior of the actual broadband impedance
- CST or TBCI simulation shows good agreement with the diffraction results

Simplifications of 3D RF Cavity Modeling

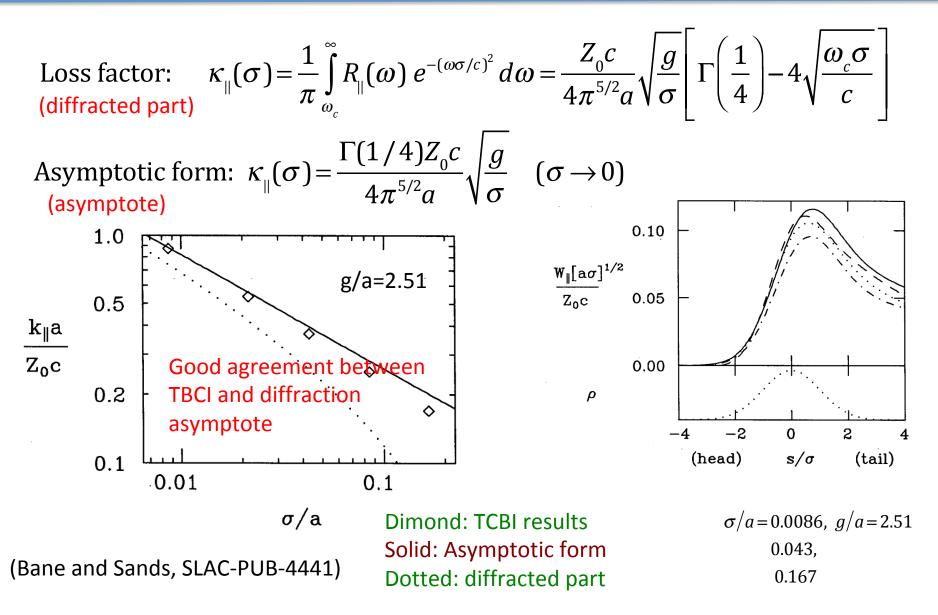

PEP II cavity 476 MHz, single cell, 1 MV gap with 150 kW, strong HOM damping, The couplers has no contribution to the broadband impedance because the reflected fields cannot catch up the bunch


 $2\sqrt{\left(g/2\right)^2+h^2}-2g\geq\sigma_z$ or $g\leq\frac{2h^2}{\sigma}$

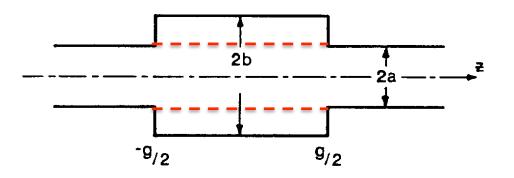
Simplifications of 3D RF Cavity Modeling

(Bane etc, SLAC_PUB_13999)

Diffraction Model of Impedance for a Pillbox Cavity

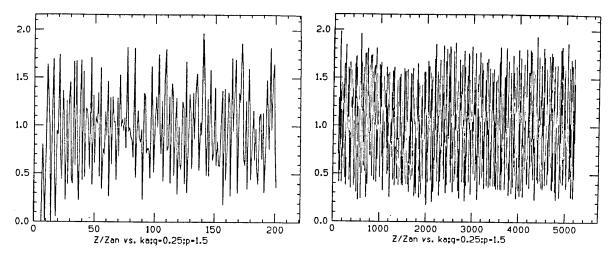


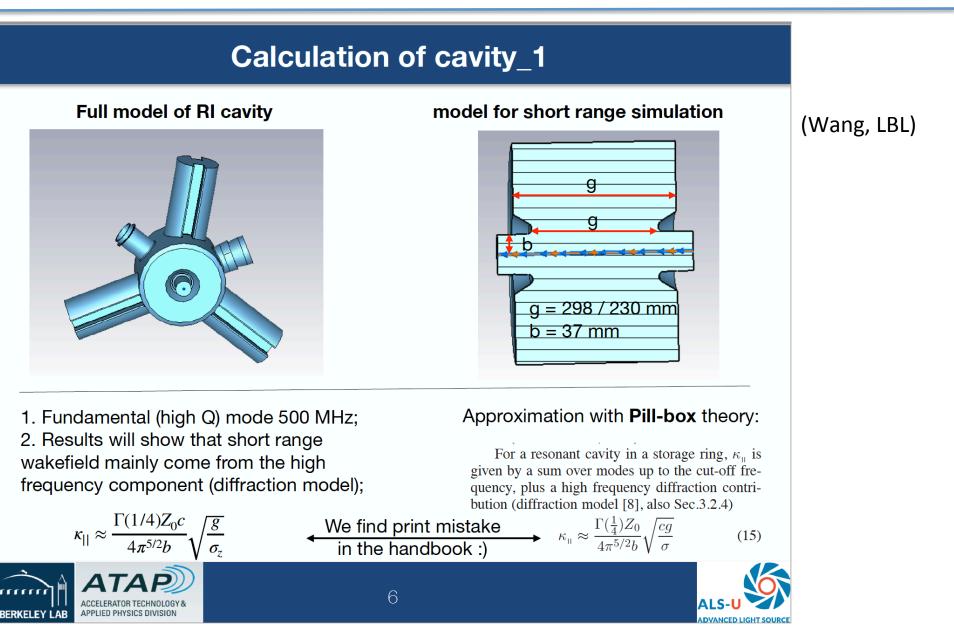
(Bane and Sands, SLAC-PUB-4441)


Power loss:
$$\Delta P_D = 2\Delta I \int_{0}^{\infty} J(y) dy = R_{\parallel}(\omega) \cdot \langle I^2(\omega) \rangle$$

Impedance:
$$R_{\parallel}(\omega) = \frac{Z_0 c}{2\pi^{3/2} a} \sqrt{\frac{g}{\omega}}$$

Numerical Modeling vs. Diffraction Theory


More Exact Solution from Mode Expansion


(Heifets and Kheifets, CEBAF-PR-87-030)

Re(Z) vs. ka

- Express field in r>a region in terms of discrete modes
- Express fields in r<a region in terms of source field and homogeneous field
- Match boundary condition at r=a and solve the fields

ALS-U Cavity Impedance Modeling

ALS-U Cavity Impedance Modeling

Calculation of cavity_2

Loss factor table:

	1mm bunch length		5mm bunch length	
	CST	Pill-box theory	CST	Pill-box theory
loss factor V/pC	1.97	2.73 / 2.41	0.98	1.22 / 1.08

Loss factor / short range wakefield contributes from all modes: $\kappa_t = \sum \kappa_n$

Mode loss factor:
$$\kappa_n = \frac{\omega_n}{2} \frac{R}{O} \cdot F(\omega_n, \sigma_z)$$

Fundamental mode:

$$\omega_0 = 2\pi * 0.5[GHz]$$

 $R/Q = 237$
 $\kappa_0 = 0.37 [V/pC]$

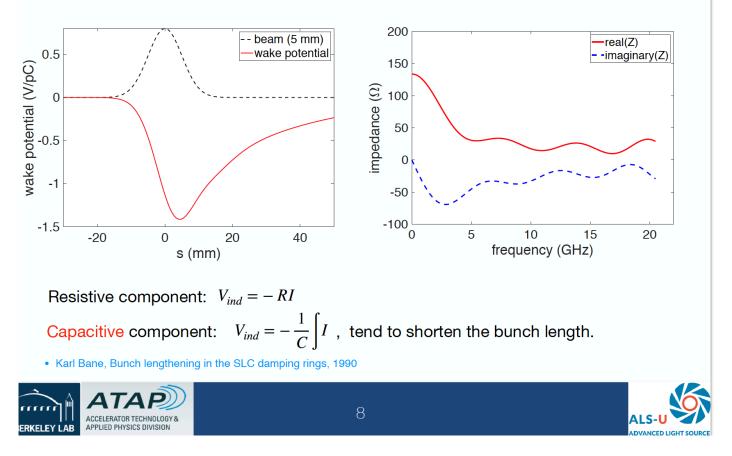
TABLE II: One RI Cavity longitudinal HOM parameters.							
	$R_s (k\Omega)$	Q	f_R (GHz)	Plane			
	61.3946	19296.6	0.621682	L			
_	29.7471	7151.77	2.65161	\mathbf{L}			
eg. P	18.6311	21439.8	2.42536	L			
- eg. i	9.32046	735.87	1.57662	L			
	8.85753	6417.2	1.91731	L			
$\omega = 0$	7.21098	5279.52	2.88224	L			
	6.6219	17478.3	0.597296	L			
R/Q	6.15527	12616.8	2.42832	L			
π/Q	5.34448	19715.2	0.621669	\mathbf{L}			
(5.27058	6292.48	2.43037	\mathbf{L}			
$\kappa = 0$	5.26743	23788.4	2.6621	\mathbf{L}			
	4.40352	10402.2	2.26339	\mathbf{L}			
	4.36381	3305.57	1.98881	\mathbf{L}			
	4.20015	4142.29	2.27578	\mathbf{L}			
	3.10371	14827.	2.68873	\mathbf{L}			

Pick one HOM: $2\pi * 1.58[GH_z]$

$$a = 2\pi - 1.56[011]$$

 $R/Q = 12.7$

$$\kappa = 0.07 \ [V/pC]$$



(Wang, LBL)

ALS-U Cavity Impedance Modeling

Calculation of cavity_3

Wake potential: resistive & capacitive property

CST computation time: 10 hrs for 1mm bunch length

(Wang, LBL)

Summary

- For the broadband impedance, 3D RF geometry can be modeled by cylindrically symmetric pillbox model
- Diffraction theory for impedance can be applied to pillbox model
- Diffraction results depicts the average behavior of the actual broadband impedance
- CST or TBCI simulation shows good agreement with the diffraction results