Magnetized Electron Cooling Simulations for JLEIC*

Ilya V. Pogorelov,[#] Dan T. Abell,[#] David L. Bruhwiler,[#] Yuri Eidelman[#] **radiasoft**

Stephen D. Webb,[#] He Zhang,[&] James Gerity,[%] Peter M. McIntyre[%]

#RadiaSoft LLC – Boulder, CO, USA

& Jefferson Lab – Newport News, VA, USA

[%]Texas A&M University – College Station, TX, USA

30 GeV bunched proton beam with IBS and cooling by

0.8

0.6

0.4

2 GeV coasting proton beam with IBS and DC cooling at

AN ASSESSMENT OF

COLLIDER SCIENCE

U.S.-BASED ELECTRON-ION

JSPEC – JLab Simulation Package for Electron Cooling

- Considers both IBS and electron cooling - calculate rates, simulate processes for specified ring
- C++, Open source: <u>https://github.com/zhanghe9704/electroncooling</u>
- Successfully benchmarked with BETACOOL \rightarrow

H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang and L. Luo, "Development of the electron cooling simulation program for JLEIC," Proc. IPACEPMW014 (2016).

JSPEC is part of the

700.

600.

500.

400.

300.

200.

(1.1)

 $\ddot{z}(t) = -\frac{Ze^2}{4\pi\epsilon_0 m_e} \frac{z}{(D^2 + z^2)^{3/2}}$

8000

2000

 $F_{\parallel}\!(eV\!/m)$

Scientific Gateway:

the booster ring

JLEIC Concept from Jefferson Lab

Early concept of pre-booster for accumulation & cooling

- Suggested a few years ago by P.M. McIntyre et al.
 - further studied as part of this SBIR-funded project
- Ring design with MAD-X and elegant
 - elegant is also part of the Sirepo Scientific Gateway, <u>https://sirepo.com</u>

Dynamic Friction Modeling – general approach

Ä

0.2

0.0

-0.2

-0.4

-0.6

-0.8

n-line aperture search--input: run.ele lattice: Ecooler.lte

• • Reduced model (cold electrons, computed) Reduced model (cold electrons, local fit)

THEORY OF ELECTRON COOLING

Yaroslav Derbenev*

Ya. Derbenev, "Theory of Electron Cooling," arXiv (2017) Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

 $F_{\parallel}(V_{ion \parallel})$ for cold e-, short times: scaling in Z, T_{int}

- The E-fields associated with friction must be carefully identified
 - -- fields from distribution of e⁻'s perturbed by the presence of the ion

bulk fields statistical fluctuations friction

- $\vec{E}(\vec{r},\vec{v},t) = \langle \vec{E}^0 \rangle (\vec{r},t) + \langle \Delta \vec{E} \rangle (\vec{r},\vec{v},t) + \vec{E}^{fl}(\vec{r},\vec{v},t)$
- Friction force must be calculated along the ion trajectory:

$$\vec{F} = -ze\langle\Delta\vec{E}\rangle(\vec{r},\vec{v},t)\big|_{\vec{r}=\vec{r}(t),\vec{r}(t)=\vec{v}}$$
(1.2)

-- we do this numerically for each individual ion-electron interaction • total force obtained by summing over e⁻ distribution (i.e. no shielding) -- bulk forces are removed by subtracting force from unperturbed e⁻'s

Gyrokinetic Averaging Yields 1D Nonlinear e⁻ Oscillations

- Hamiltonian perturbation theory for single ion & e⁻
 - unperturbed motion: drifting ion and magnetized e-
 - primary assumption: D (impact parameter) >> r_L (Larmor radius)
 - longitudinal dynamics: $V_{ion, \perp} = 0$ (to be relaxed in future work)
- e⁻ gyrocenters stay on cylinder of constant radius
- choose ion to be stationary at the origin (convenient coordinates)
 - gyrocenters move in a nonlinear 1D potential:
 - weak nonlinearity
 - larger amplitudes => longer periods)
- shortest oscillation period:
- $T_{lin} = \frac{2\pi}{c} \sqrt{\frac{D^3}{Zr_e}}$ both trapped and passing orbits - numerical simulations are required to capture these effects

- Considered protons and Au⁺⁷⁹ ions
 - with different interaction times in the cooler
 - for small V, $dF_{\parallel}(V)/dV \approx 2Z n_e m_e r_e c^2 T_{int}$
 - at large V, $F_{\parallel} \approx 2\pi Z^2 n_e m_e (r_e c^2)^2 / V^2$

• with no dependence on T_{int}

- for a given T_{int} , peak friction force scales as $Z^{4/3}$

- For $T_{int} < T_{plasma}$ and small-to-moderate V_{ion} $F_{\parallel}(V_{ion,\parallel})$ increases with interaction time, while the large-V tail is independent of T_{int}
- $F_{\parallel}(V_{ion,\parallel})$ is linear in n_e by construction
- Thermal effects are computed via convolution of $F_{\parallel}(V_{ion,\parallel})$ with warm longitudinal electron distribution

- Comparison of new model for Au⁺⁷⁹ ions and protons with:
 - Derbenev and Skrinsky (D-S) for $V_{ion,\perp} = 0$ and large $V_{ion,\parallel}$
 - Ya. S. Derbenev and A.N. Skrinsky, Part. Accel. 8 (1978), 235

- for lower ion velocity, details depend on Z

than Parkhomchuk at ALL velocities

- Parkhomchuk (P) with 0 and finite effective long. e- temp • V.V. Parkhomchuk, Nucl. Instr. Meth. in Phys. Res. A 441 (2000), p. 9

 $-F_{\parallel}(eV/m)$

0.0

0.5

1.0

1.5

• Consistently lower force than D-S and P for larger $V_{ion,ll}$

- for cold electrons, new model shows consistently lower force values

Parametric fit yields physical insight

• no logarithmic singularity for $D \rightarrow 0$ or $D \rightarrow \infty$

 $V_{ion,\,\parallel}(10^5\ m/s)$

2.0 2.5 3.0

 $V_{ion,\,\parallel}(10^5\ m/s)$

Reduced model ($\Delta_{e\parallel}=0$)

Parkhomchuk ($\Delta_{e\parallel}=0$)

Reduced model ($\Delta_{e\parallel}=10^5 m/s$)

Parkhomchuk ($\Delta_{e\, \parallel} {=} 10^5 \; m/s$)

Derbenev-Skrinsky $(V_{i\perp}=0)$

3.5

4.0

Reduced model ($\Delta_{e\parallel}=0$)

Parkhomchuk ($\Delta_{e\parallel}=0$)

Reduced model ($\Delta_{e\parallel} = 10^5 m/s$)

Parkhomchuk ($\Delta_{e\parallel} = 10^5 m/s$)

Derbenev-Skrinsky $(V_{i \perp} = 0)$

*This material is based upon work supported by the U.S. Department of Energy, Office of Science, through the SBIR program of the Office of Nuclear Physics under Award No. DE-SC0015212, with partial support from RadiaSoft LLC.

• • computed Av $F_{\parallel}(v) =$ — local fit - $Av/(\sigma^2 + v^2)^{3/2}$

Office of Science

