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Abstract
In the Spin Transparency (ST) mode of RHIC, the axes of

its Siberian snakes are parallel. The spin tune in the ST mode
is zero and the spin motion becomes degenerate: any spin
direction repeats every particle turn. In contrast, the lattice of
a conventional collider determines a unique stable periodic
spin direction, so that the collider operates in the Preferred
Spin (PS) mode. Contributions of perturbing magnetic fields
to the spin resonance strengths in the PS mode are usually
calculated using the spin response function. However, in
that form, it is not applicable in the ST mode. This paper
presents a response function formalism expanded for the
ST mode of operation of conventional colliders with two
identical Siberian snakes in the highly-relativistic limit. We
present calculations of the spin response function for RHIC
in the ST mode.

INTRODUCTION
An experimental test of a new polarization control mode,

the Spin Transparency (ST) mode, is planned in RHIC [1].
RHIC is a collider with two helical Syberian snakes. Its spin
tune is determined by the angle φ between the snake axes
and the stable polarization is vertical in the collider’s arcs:

ν = φ/π, ®narc = ±®ey .

Thus, the spin tune equals one half (RHIC’s regular PS
mode of operation) if the angle between the snake axes is
π/2. To convert RHIC to the ST mode, when the spin tune
is zero, the angle between the snake axes must be set to zero,
i.e. the snakes must be identical. From the spin dynamics
point of view, RHIC then becomes equivalent to a figure-8
collider [2]. While geometrically obviously still different,
the two kinds of rings have identical topologies of the spin
motion. The two snakes located opposite to each other in a
circular ring divide the ring into two 180◦ arcs. Due to the
action of the snakes, the spin sees opposite fields in the two
arcs in exactly the same way as it happens in a figure-8 ring.
JINR (Dubna, Russia) develops the NICA collider project
with two solenoidal snakes set in the ST mode [3].

The ST mode of a ring removes the integral effect of the
whole ring lattice on the spin. In an ideal case, any spin di-
rection on the closed design orbit of a spin transparent ring
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is periodic. In a realistic case, the spin dynamics is governed
by lattice imperfections such as dipole roll and quadrupole
misalignments. The spin effect of such imperfections is typi-
cally small. However, it breaks the degeneracy of a perfectly
spin transparent ring. To regain control of the spin motion,
one must introduce relatively weak magnetic elements into
the ring whose spin effect is still relatively small but is much
greater than the spin effect of the imperfections. To deter-
mine the required magnetic field integrals of the spin control
elements, one must be able to accurately estimate the ex-
pected effect of imperfections, which can be characterized
by an average spin field, or a zero-integer spin resonance
strength (an absolute value of the average spin field).

The resonance strength can be most conveniently calcu-
lated using a periodic spin response function [4, 5]. The
response function is a spin Green’s function describing the
effect of a δ-function-like magnetic field perturbation on the
spin at a certain location in the ring. It takes into account
the spin effect of the whole ring in response to a local field
perturbation. The response function describes the spin effect
in the linear approximation and can be calculated using the
ring’s linear optics. The total effect of the ring imperfec-
tions in terms of the spin resonance strength can be obtained
by integrating the spin effects of all imperfections around
the ring using the response function. This can be done in a
statistical sense [6]. A generalized spin response function
has earlier been derived for a ring with a preferred spin ori-
entation [7]. However, that formalism has been developed
under the assumption of a non-resonant case with an existing
unique stable spin direction and is not directly applicable
to a resonant case without a preferred spin direction such
as the ST mode. In this paper, we present spin response
formalism for RHIC with two identical Siberian snakes at
opposite locations.

ST MODE SPIN REFERENCE FRAME
We introduce a system of spin unit vectors ®e s

i to describe
the spin motion. The spin reference frame is periodic in the
lab frame and threfore in the accelerator frame because any
spin direction in the ST mode repeats itself every particle
turn. The choice of the spin unit vectors is arbitrary: for
example, it is convenient to align them with the accelerator
unit vectors {®ex, ®ey, ®ez} at the observation point. The spin
unit vectors ®e s

i are then oriented in the detector along the
radial, vertical, and longitudinal directions, respectively. In
the spin reference frame, changes in the spin components



can only be caused by perturbing fields arising either due
to deviation of the particle motion from the design orbit
(associated with the beam emittances) or due to construction
and alignment errors of the ring’s magnetic elements.

Spin unit vectors are defined in RHIC with its two Siberian
snakes in the following way. Vector ®e s

2 = ζ ®ey is vertical
in the arcs and changes sign ζ = ±1 when passing through
a snake from one arc into the other. The two other basis
vectors ®e s

1 and ®e s
3 lie in the ring’s plane making many turns

in the arcs

®e s
1 + i ®e s

3 = eiα(1−ζ )eiΨ(®ex + iζ ®ez),

where Ψ = γG
∫ z

0 Kyζ dz is the spin phase, which is a pe-
riodic function of the ring Ψ(z) = Ψ(z + L), L is the orbit
length, and α is the angle the snake axes ®m make in the ring’s
plane with the radial direction (mx + imz = eiα).

RESPONSE FUNCTIONS IN ST MODE
In the general case, effect of periodic perturbing fields

∆Bx ,∆By , and ∆Bz on the spin is described in the ST mode
by three vector response functions, radial ®Fx , vertical ®Fy ,
and longitudinal ®Fz , which are determined by the ring’s
lattice [8]:

®ω =
1

2π

∫ L

0

[
∆Bx

Bρ
®Fx +

∆By

Bρ
®Fy +
∆Bz

Bρ
®Fz

]
dz ,

where Bρ is the magnetic rigidity. In the spin reference
frame, the spin motion represents rotation about the average
spin field ®ω, whose magnitude is equal to the zero-integer
spin resonance strength (ST-resonance strength): ω = | ®ω |.

Let us consider the response functions of RHIC in the
relativistic limit γG ≫ 1, which is valid for protons starting
from the injection energy. The longitudinal response func-
tion components are determined only by the longitudinal
components of the spin unit vectors Fzi = (1 + G)®ez ®e s

i and
do not grow with energy. To the contrary, the transverse
response functions change proportionally to energy thus
making the spin effect of transverse perturbing magnetic
fields dominant at high energies.

RHIC has no design transverse coupling. Out analysis
shows that only two radial response function components Fx1
and Fx3 are non-zero at high energies. Thus, the main spin
effect in the ST mode in RHIC comes from radial perturbing
magnetic field and the spin field lies in the ring’s plane.

The radial response function is given by

F = Fx1 + iFx3 =
γG
2i

[
f ∗y

∫ z

−∞

f ′y

(
eiα(1−ζ )

d
dz

eiΨ
)

dz

− fy

∫ z

−∞

f ∗′y

(
eiα(1−ζ )

d
dz

eiΨ
)

dz
]
,

where fy is the vertical Floquet function, which is expressed
in terms of the vertical Twiss β function as

fy =
√
βy exp

(
i
∫ z

0

dz
βy

)
.

Using the periodic property of the Floquet function
fy(z + L) = e2πiνy fy(z), where νy is the vertical betatron
tune, integrals of the form∫ z

−∞

f ′yΦ(z) dz,
∫ z

−∞

f ∗′y Φ(z) dz,

with a periodic function Φ(z) = Φ(z + L) can be reduced to
integration over one turn

∫ z

−∞

f ′yΦ(z) dz =

∫ L

0 f ′yΦ(z) dz

e2πiνy − 1
+

∫ z

0
f ′yΦ(z) dz,∫ z

−∞

f ∗′y Φ(z) dz =

∫ L

0 f ∗′y Φ(z) dz

e−2πiνy − 1
+

∫ z

0
f ∗′y Φ(z) dz.

We used RHIC’s injection optics shown in Fig. 1 in the
above equations to obtain RHIC’s response function in the
ST mode. The absolute value of the response function is
plotted in Fig. 2 for RHIC’s injection at γG = 45.5.

Figure 1: RHIC’s injection optics.

Figure 2: Absolute value of the response function in RHIC
at γG = 45.5.

ST-RESONANCE STRENGTH
We used the statistical model to evaluate the absolute value

of the coherent part of the ST-resonance strength |ωcoh | for
RHIC’s injection lattice. This is the dominant component



of the resonance strength. It assumes independent random
errors and treats them in a statistical sense. It predicts a
resonance strength of

|ωcoh | =

√
1

4π2(Bρ)2
∑

elements
∆B2

x |F |2L2
x,

where (∆B2
x)

1/2 is the rms error of the radial magnetic field
in an element, and Lx is the element’s length. Radial error
magnetic fields arise in a ring due to dipole roll

∆B2
xL2

x = θ
2
∆φ2(Bρ)2

and vertical quadrupole misalignments

∆B2
xL2

x = (k1Lx)
2
∆y2(Bρ)2,

where θ is the dipole bending angle, (∆φ2)1/2 is the dipole’s
rms roll angle, k1Lx is the integrated normalized quadrupole
gradient, and (∆y2)1/2 is the rms vertical quadrupole mis-
alignment. We chose ∆φ2 and ∆y2 that equally contribute
to the rms vertical closed orbit excursion and together give
an rms closed orbit excursion of 200 µm measured in RHIC.
Figure 3 shows the most probable vertical orbit excursion
given by

σy =

√√√
βy(z)

8 sin2(πνy)

∑
elements

∆B2
xL2

x

(Bρ)2
βy(zj),

Figure 3: RHIC’s most probable vertical orbit excursion
around the ring with an rms value of 200 µm.

We used the obtained values of ∆φ2 and ∆y2 to calculate
the spin resonance strength |ωcoh | as a function of energy.
The result is shown in Fig. 4. Figure 4 indicates that, up
to 100 GeV, the resonance strength does not significantly
exceed a value of 0.01. This means that the spin control
system should provide a spin tune value much greater than
that.

CONCLUSION
Our earlier estimates were based on a spin tune of 0.05 [1],

which can be easily set in RHIC using the existing Siberian

Figure 4: Coherent part of the ST-resonance strength in
RHIC as a function of energy.

snakes and spin rotators. The calculation in Fig. 4 confirms
that a spin tune of 0.05 is sufficient for complete control
of the proton polarization at least up to 100 GeV. Above
100 GeV, aside for a few interference peaks, the resonance
strength stays at the level of about 0.01. The coherent part of
the resonance strength does not cause depolarization. There-
fore, it may still be possible to go to higher energies and
control the polarization between the interference peaks with
a small spin tune. This possibility requires further study.
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