6 T CABLE-IN-CONDUIT DIPOLES TO DOUBLE THE ENERGY OF THE JLEIC ION RING

Jeff Breitschopf², Daniel Chavez¹, Joshua Kellams², Peter McIntyre¹, and Akhdiyor Sattarov² p-mcintyre@tamu.edu ¹Texas A&M University, ²Accelerator Technology Corp.

Abstract: The proposed electron-ion collider JLEIC would make high-luminosity collisions of polarized ions and polarized electrons with electron energy up to 12 GeV and ion energy up to 40 GeV/u. Both the luminosity and the collision energy could be increased by doubling the dipole field in the ion ring from 3 T to 6 T, and the enhanced performance would access the full range of parameters for the physics objectives of the project.

A large-aperture 6 T dipole is being developed for this purpose. It utilizes a 2layer CIC winding to produce homogeneous field in a 10cm x 6cm aperture over the operating field range from 0.5 T to 6 T.

The arcs contain 64 half-cells,

Each half-cell contains two 4 m long dipoles.

100 GeV ion energy ⇒ 3 T dipole field. 200 GeV ion energy \Rightarrow 6 T dipole field.

II. Cable-in-Conduit technology

CIC for 6 T dipole:

23 kA 2--laver CIC

15+21 wires NbTi/Cu 1.2 mm dia. perforated 316LN center tube 0.7 mm CuNi sheath tube

6 cm bend radius

tube (SCHe flow)

Long-length fabrication of CIC

2. Cable wires onto center tube, SS tape over-wrap. Repeat step 2 for layer 2.

sheath tube as loose fit

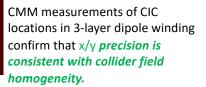
5. Draw sheath tube onto for one JLEIC dipole. cable to compress wires against center tube.

II. CIC Coil Technology

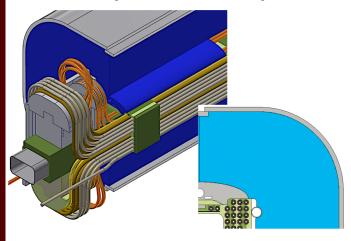
Robotic bend tools form the flared ends:

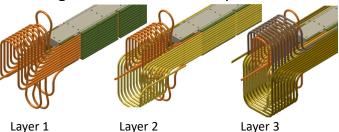
180° U-bend

90° flare of U-bend

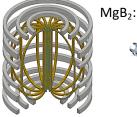

Samples of 2-layer CIC were formed into U-bends and into several dipole winding turns.

G-11 Structural beam with Measure I_C of extracted strands machined channels for CIC turns from CIC in flared ends of

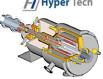

winding: *no degradation*.


Completed 24-turn CIC winding

III. 6 T Superferric CIC dipole


6 T operating field, 10x6 cm² aperture $b_n < 1$ unit for all multipoles over field range 0.1-6 T. 37 turns, 23 kA coil current

Winding the coil for the 6 T dipole



V. CIC using other superconductors

Nb₃Sn, Bi-2212:

/-// Hyper Tech

ATC manufactures 140 m lengths of CIC – product for sale!