Pulsed Beam Cooling Experiment Preparation for Dec. 2019 Last Experiment at IMP

Haipeng Wang

Contributions:

M. Bruker, A. Hutton, J. Musson, K. Jordan, T. Powers, R. A. Rimmer, M. Spata, A. Sy,
S. Wang, C. Wilson, J. Yan, H. Zhang, Y. Zhang (JLab PI)
Jefferson Lab, Newport News, VA 23606, USA
L.J Mao (IMP PI), R. S. Mao, M.T. Tang, J. Li, X.M. Ma, J.C. Yang, X.D. Yang, Y.J. Yuan,
H. Zhao (now at BNL), H.W. Zhao, T. C. Zhao
Institute of Modern Physics, Lanzhou 730000, China

Motivation:

- Purpose of the last experiment is to improve and obtain the best bunched beam cooling experiment data with calibrated diagnostics avoiding saturation effects of RF amplifiers including all synchronized ion BPM, IPM, Schottky, DCCT signals.
 Demonstrate longitudinal (transverse ?) sweeping or dithering of the cooling electron bunch to improve the ion bunch distribution (avoid overcooling of the core or double Gaussian distribution)
- Demonstrate hollow beam cooling (stretch goal) to improve the transverse distribution (preferentially cool halo)
- All best data to calibrate JSPEC and allow us to complete a high quality of publications

Experiments done so far:

- May 2016, 1st experiment: bunched beam electron was formed by JLab's HV pulser cooling ¹²C⁶⁺ was observed for the 1st time. Data was taken at different injection fills
- April 2017, 2rd experiment: improved triggering control and beam instrumentation for taking data in the same injection fill so cooling process was more clearly observed
- December 2018, 3rd experiment without JLab team due to the visa issue. The ion beam is ⁸⁶Kr^{25+.} New BPM, IPM data obtained but missed calibration data. The Schottky signal missed resolution on sidebands Publications so far:
 - 1. Nuclear Inst. and Methods in Phys. Research, A 902 (2018) 219-227.
 - 2. doi:10.18429/JACoW-IPAC2018-TUPAL069
 - 3. doi:10.18429/JACoW-COOL2017-TUP15
 - 4. PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 023501 (2018)

HIREL-CSR Layout at IMP and Machine Design Parameters

Modification of SC-35 gun and new switching pulser and fiber optical controller

Experiment Parameters and Data Taken in 2017/2018

ION RING	IMP (CSKm ring			רו	
	2017	2018			<u> </u>
specieses	12C6+	86Kr25+	12C6+		Experiment parameters
bunch charge		204.20		pС	
charge per nucleon	0.5	0.2907	0.5		A lot of data taken at
kinetic energy per nucleon	7.0	5.00753	19.0	Me	
beta	0.121	0.103	0.198		2017 and 2018
gamma	1.007	1.005	1.020		
revolution frequency	225.907	191.372	368.687	kH2	
Harmonic Number	2	2	2		
Vri	1200	600	1200	V	
RF frequency	451.814	382.744	737.374	kH2	On April 27, 2017 trial
synchrotron frequency	813.824	440.214	798.167	Hz	to ramp higher ion
Resonant or Broadband Schottky Picku	IMP (CSRm coole)		to ramp nigher ion
	Plus Minus 0.5MHz				energy but failed to
Schottky spectrum center frequency	5.8736	2.2976	5.8736	мн	chergy, but funce to
harmonic number	26	12	15		cool it due to lack of DC
p number	0.00010	0.00593	0.93113		
Electron Cooler	IMP (SC35 coole				cooling at injection, so
					hoom intensity was not
kinetic energy	3.81	2.7271	10.35	keV	Deam intensity was not
electron pulse edge width	0.035	0.721	0.058	rad	high enough for the
dI/dt	2.64	0.11	2.64	mА	ns
Cooling section length	3.4	3.4	3.4	m	cooling demonstration
Electron kick δE per turn	0.306	0.010	0.112	ke V	
E beam radius at cooler section	1.25-2.5	1.25-2.5	1.25-2.5	cm	·
				L	
High Voltage Pulser, DEI PVX-4150					
maximum average switching power	150	150	150	w	
optimum anode voltage	1	1	1	kV	JLab modified DC e-gun
maximum Pulse Rep Rate at clamped grid voltage	571.2	571.2	571.2	kHz	nulse generator's
maximum pulse grid voltage at revolution frequency	575.0	575.0	371.0	V	puise generator s
maximum pulsed peak current at revolution frequency	177.36	177.36	110.91	mA	Limitation
maximum pulse grid voltage at bunch frequency	297.0	297.0	145.0	V	
maximum pulsed peak current at bunch frequency	90.64	90.64	55.42	mA	
minimum negative baise to supress the dark current	-400.00	-400.00	-400.00	v	
grid voltage clamp for the 150W	220.000	220.000	220.000	v	
maximum peak current at clamped voltage	71.719	71.719	71,719	mA	l de la construcción de la constru

Cooling at injection energy at 5-7MeV/u [most experiment data taken in 2016/2017/2018 at this energy level]

Beam Diagnostics at CSRm for Bunched Cooling Experiment

Diagnostics	Function	Trigger	Software
lon BPMs	Measure the ion bunch shape and current	Yes	Labview (JLab) with LeCroy Scope and E- gun PLC
Electron BPMs	Measure the electron pulse shape and current	Yes	
DCCT	Measure the ion beam (bunched/coasting) current	Yes	Labview (IMP)
Schottky	Measure the longitudinal cooling	Yes	Tektronics(now R&S) spectrum analyzer
IPM	Measure the transverse cooling	Yes	EPICS

1.350 s After Application of Electron Pulses

Data recording with JLab's LeCroy scope

Beam diagnostic setups:

Global Timing and Local Triggering Logics for the BPM Data Capturing within One Filling Time of CSRm

THE IMP TIMBING SYSTEM IS A MULTI OUTPUT SYSTEM THAT AS BASED ON FIBER OPTIC AND COAXIAL LINE LINKS. SEVERAL LOCATIONS CAN BE SET UP TO TRIGGER WITH THE SAME TIMING. THE TEKTRONIX REAL TIME SPECTRUM ANALYZER, TRANSVERSE PROFILE MONITOR CAMERA SYSTEM, AND THE LEOROY SCOPE WILL BE SET UP TO START AT THE SAME TIME. IMP HAS NAMED THE TRIGGER EVENT BY NUMBER AND ITS FUNCTION. WE HAVE SYNCHRONIZED THE TRIGGERS BUT IN THE END WE HAD TO APPLY SOME MINOR OFFSETS TO THE LABVIEW CONTROL.

THE NEGATIVE GOING EVENT PULSE IS ON THE ORDER OF 50 mS LONG. WE WILL USE THE TEK FUNCTION GENERATOR (MODEL AG33220) TO PRODUCE THE 10 SECOND CONTROL PULSE USED BY THE PLC OF GRID PULSER CONTROL

THE LECROY HAS BEEN SET UP TO TRIGGER ON THE EDGE OF A 18 Hz PULSE TRAIN AT EACH TRIGGER EVENT IT WILL TAKE DATA WITH A TIME STAMP THAT IS WITH A ACCURACY OF 1 mS. THIS TIME STAMP WILL BE THE REFERENCE FOR THE MEASUREMENT CONDITIONS.

GLOBAL TIMING FOR PLC, AND PULSERS

Ion/Electron Beam Synchronization Setup

Experiment results

Synchronization

The repetition frequency of electron pulse **must be matched to** the ion beam revolution frequency

2017/2018 data analysis demonstrated the bunched beam cooling feature

BPM/IPM data from Dec, 2018 experiment have possible RF amplifier saturation effects Both BPM and IPM • have double Gaussian distributions DCCT ion current=43.78uA e energy=3.74keV e DC collector current=67.2mA e average pulsed current=19.3mA -1.5 -1.0 -0.5 0.0 RF Frequency=445.6577kHz BPM April, 2017 data e-pulse width=1.0us e-pulse frequency=222.8288kHz RF Voltage=1.49/1.2kV (W/R) 10 ¹²C⁶⁺ion signal

Time (us)

5

7.0

0.5

0.0

0.33

100 BPM (Volt)

0,000

0,25 0,250 0.315

0,500 0,625 07.50 sampling time (s)

\$22. {27. . 22. 22.

60. 130

Experiment results

The cooling process with different electron pulse length

It is observed that the cooling is faster with larger e-beam pulse length (the electron peak current is a constant)

The cooling process with different electron peak current

It is also observed that the cooling is faster with high e-beam peak current (the electron pulse length is a constant)

The measured longitudinal beam shape can be fitted by **Bi-Gaussian distribution**

$$y = \frac{\Gamma_c}{\sqrt{2\pi}} \frac{1}{\sigma_c} \exp\left(-\frac{(t-t_0)^2}{2\sigma_c^2}\right) + \frac{\Gamma_t}{\sqrt{2\pi}} \frac{1}{\sigma_t} \exp\left(-\frac{(t-t_0)^2}{2\sigma_t^2}\right) + \delta \qquad \Longrightarrow \qquad \sigma = \frac{S_c \sigma_c + S_t \sigma_t}{S_c + S_t}$$

The cooling rate increases with increasing of the electron pulse length and the e-beam peak current.

> The transverse beam cooling effect was observed by IPM detector.

Schottky signal analysis: cooling rate τ_{cool} and dp/p estimation

revolution

Power spectral density – 2D Dec. 2018's data

• Full time span, frequency resolution 25 Hz, time resolution 0.04 s

Full time span shows interesting times to look at in more detail, in the absence of other info about the measurement

These spectra look similar for the 5 sample data sets available to us

Look at 1D slices here, over time range ~0.5 to 1 s

Power spectral density – 1D slices

Power spectral density – 1D slices

Power spectral density – 1D slices

- Calculated f_s ~400 Hz does not match with observed f_s ~250 Hz
- No clear evidence of sidebands associated with transverse Schottky signals, expected as repeats of longitudinal structure

Single particle of a bunched beam \rightarrow modulation of arrival by synchrotron oscillation: Synchrotron frequency $f_s = Q_s \cdot f_0$ $Q_s < 1$ synchrotron tune i.e. long. oscillations per turn $\tau_s(t) = \hat{\tau}_s \cdot \cos(2\pi f_s t + \psi)$

Modification of coasting beam case for a frequency modulation: $I_1(t) = ef_0 + 2ef_0 \sum_{h=0}^{\infty} \cos \left\{ 2\pi h f_0 [t + \hat{\boldsymbol{\tau}}_s \cdot \cos(2\pi f_s t + \psi)] \right\}$

Each harmonics **h** comprises of lower and upper sidebands: $\sum_{p=-\infty}^{\infty} J_p(2\pi h f_0 \hat{\tau}_s) \cdot \cos(2\pi h f_0 t + 2\pi p f_s t + p \psi)$

For each revolution harmonics h the longitudinal is split

- > Central peak at hf_0 with height $J_0(2\pi \cdot hf_0 \cdot \hat{\boldsymbol{\tau}}_s)$
- > Satellites at $hf_0 \pm pf_s$ with height $J_p (2\pi \cdot hf_0 \cdot \hat{\boldsymbol{\tau}}_s)$

Note:

- The argument of Bessel functions contains amplitude of synchrotron oscillation $\hat{\tau}_s$ & harmonics **h**
- Distance of sidebands are independent on harmonics h

Bunched Beam: Longitudinal Schottky Spectrum for many Particles

Particles have different amplitudes $\hat{\tau}_s$ and initial phases ψ \Rightarrow averaging over initial parameters for n = 1...N particles:

Results:

Central peak p = 0: No initial phase for single particles $U_0(t) \propto I_0 (2\pi \cdot hf_0 \cdot \hat{\tau}) \cdot \cos(2\pi hf_0 t)$ \Rightarrow Total power $P_{tot}(p = 0) \propto N^2$ i.e. contribution from 1...**N** particles add up **coherently** \Rightarrow Width: $\sigma_{p=0} = 0$ (ideally without power supplier ripples etc.) Remark: This signal part is used in regular BPMs > Satellites $p \neq 0$: initial phases ψ appearing $U_p(t) \propto J_p(2\pi \cdot hf_0 \cdot \hat{\tau}) \cdot \cos(2\pi hf_0 t + 2\pi pf_s t + p\psi)$ \Rightarrow Total power $P_{tot}(p \neq 0) \propto N$ i.e. contribution from 1...**N** particles add up **incoherently** \Rightarrow Width: $\sigma_{p\neq 0} \propto p \cdot \Delta f_s$ lines getting wider due to mom. spread $\Delta p / p_0 \&$ possible spread of synchrotron frequency Δf_{s}

Example for scaling of power: If $N = 10^{10}$ then $P_{tot}(p = 0) \approx 100$ dB $\cdot P_{tot}(p \neq 0)$ Remarks: The central peak is coherent $P_{tot}(p = 0) \propto N^2$ \Rightarrow applying a **stringent** definition this is **not** a Schottky line P. Forck, GSI: Tutorial on Schottky Signal Analysis 45

IBIC 2017, Grand Rapids

Example of longitudinal Schottky Analysis for a bunched Beam

Example: **Bunched** beam at GSI synchrotron *Beam:* Injection *E_{kin}* = 11. 4 MeV/u harm. *h* = 120

Application for 'regular' beams:

- > Determination of synchrotron frequency f_s
- Determination of momentum spread:
 - envelop does **not** represent directly coasting beam
 not directly usable for daily operat
 - \Rightarrow **not** directly usable for daily operation
 - but can be extracted with detailed analysis due to the theorem $\sum_{p=-\infty}^{\infty} J_p(x) = 1$ for all x \Rightarrow for each band $h: \int P_{bunch} df = \int P_{coasting} df$

Application for intense beams:

- The sidebands reflect the distribution P(f_s) of the synchrotron freq. due to their incoherent nature see e.g. E. Shaposhnikova et al., HB'10, p. 363 (2010) & PAC'09, p. 3531 (2009), V. Balbecov et al., EPAC'04, p. 791 (2004)
- However, the spectrum is significantly deformed amplitude $\hat{\tau}_s$ dependent synchrotron freq. $f_s(\hat{\tau}_s)$ see e.g. O. Boine-Frankenheim, V. Kornilov., Phys. Rev. AB 12. 114201 (2009)

Transverse Schottky Analysis for bunched Beams

 $\boldsymbol{\mathsf{U}}_{\mathsf{diff}}$

Structure of spectrum:

Longitudinal peak with synchrotron SB

U_{left}

- central peak $P_0 \propto N^2$ called coherent

Schottky pickup

right

bunch

- sidebands $P_p \propto N$ called incoherent
- Transverse peaks comprises of
 - replication of coherent long. structure
- incoherent base might be visible
 Remark: Spectrum can be described by lengthy formula see e.g. S. Chattopadhay, CERN 84-11 (1984)
 Remark: Height of long. band depends geometrical center of the beam in the pick-up

P. Forck, GSI: Tutorial on Schottky Signal Analysis

Transverse Schottky Analysis for bunched Beams

>∫←

*hf*₀ frequency

$$\Delta f_h^{\pm} = \eta \frac{\Delta p}{p_0} \cdot f_0 \left(h \pm q \pm \frac{\xi}{\eta} Q_0 \right)$$

^oower dB qf. qfo incoherent incoherent longitudinal transverse signal content signal content Δf_{usb} Δf_{lsb} frequency offset f - 4.81 GHz [kHz] M. Wendt et al. IBIC'16, p. 453 (2016), M. Betz et al., NIMA submitted P. Forck, GSI: Tutorial on Schottky Signal Analysis 49

power P_{diff}

 $(h-q)f_0$

 $f_{lsb} = (h - q)f_0$

IBIC 2017, Grand Rapids

Transverse Schottky Analysis for bunched Beams at LHC

Schottky spectrogram during LHC ramp and collision:

The interesting information is in the <u>in</u>coherent part of the spectrum (i.e. like for coasting beams)

Longitudinal part

- Width: → momentum spread momentum spread decreases
- Transverse part
 - Center: → tune shift for collision setting
 - Width: → chromaticity difference of lower & upper SB
 - Integral : \rightarrow emittance reduction of geometric emittance

Example: LHC nominal filling with Pb^{82+} \rightarrow acceleration & collisional optics within \approx 50 min

M. Betz et al. IPAC'16, p. 226 (2016)

Deficiencies of obtained experimental data (2017/2018):

Ion BPM signal data:

- From shoe-box type at CSRm with 50Ω input imp. Preamp. fcut~7.7MHz, so the BPM signal is a differential signal of ion pulse shape in 2017. Signal voltage integration includes noise buildup (with slope) After the slope correction, the signal at the pulse ends generated unphysical dips. The pulse distortion could be due to the external circuit capacitance or amp/cable mismatch
- Rebuild a new show-box BPM. Use 1M Ω preamps, so fcut drops to ~386Hz
- Did the bench RF measurement for the beam-to-signal transfer function by the wire-stretching technique
- No differential bunch signal anymore in 2018, but high Impedance amplifiers seem saturated at high beam signal

Schottky signal data:

- 2017 Used RSA5100A (RSA385A) spectrum analyzer. IQ data obtained had a low sampling rate 48.8kS/s
- 2017 RBW=100Hz, spectrum resolution is limited to ~32Hz only even with a CFFT/ICFFT HPF/LPF reprocessing
- Build new Schottky device in 2018
- Use 50 Ω amplifiers
- Uses R&S Spectrum Analyzer with .wvd data downloaded
- Too wide BW setup for the U/D sidebands recording
 IPM signal data:
 - Too slow data recording due to ionization
 - Possible amplifier saturation

Vin=1V, 15ns rise/fall, 70ns flat top, 250kHz

New Capacitive Pickup of Schottky Device

Homework on Challenges of Transverse Schottky Signals

Figure 13. Block diagram of the electronic system of the CERN Schottky receiver - [10].

Challenge for bunched beam Schottky:

Suppression of broadband sum signal to prevent for saturation of electronics

Design considerations:

- Careful matching
- Switching during bunch passage switching time ≈ 1 ns ⇒ one bunch per turn
- Filtering of low signals without deformation to increase signal-to-noise
- Down-mixing locked to acc. rf
- ADC sampling with $4 \cdot f_0$ revolution freq. $f_0 = 11.2$ kHz Requirements: low noise & large dynamic range

M. Wendt et al. IBIC'16, p. 453 (2016), & M. Betz et al., NIM A submitted

P. Forck, GSI: Tutorial on Schottky Signal Analysis

r s t

Sweeping delay time A between electron and ion bunches with a frequency of synchrotron?

Need new Labview programming

DELAYS

DT $i\{,j,t\}$

Delay Time of channel i is set to t seconds relative to channel j. Example: DT 3,2,1.2E-6 will set B=A+0.000,001,200,000 seconds. The command DT 2,1,10.5 will set A=T0+10.50000000000 seconds. Setting delays shorter than 0 or longer than 999.999,999,999,995 seconds will set bit 2 of the Error Status Byte.

An efficient method to change a delay is to position the cursor under a digit (using the SC command) and then increment/decrement the digit (using the IC command).

Figure - 7 DG535 Timing Diagram

IMP Pulsed E-Cooling Triggering Setup – Tom Powers, May 21, 2016

IMP Pulsed E-Cooling Triggering Setup, May 22, 2016

BPM Measurement Delay and Triggering and Display on LabView DAS

Summary:

- Bunched electron beam cooling 12C+6 ion beam at 7MeV/u in 2017 and 85Kr25+ at 5MeV/u in 2018 have been demonstrated at CSRm ring at IMP, China by our IMP/JLab collaboration team.
- 2. With the help of RF focusing, the Ion bunch length has been reduced from the coasting to ~3m long by a longer electron bunch but as short as 18m within about 0.5 second
- 3. The longitudinal cooling of momentum spread has been reduced from ~2e-3 to ~6e-4 with a similar cooling rate
- 4. The simulation models developed so far agree with the measurement results qualitatively.
- 5. Beam diagnostics like ion BPM, IPM and Schottky signals strongly support these evidences but obtained data so far lacks of calibrations and possible amplifier signal saturation which had affected measurement accuracies for a further quantitatively benchmark for the JESPEC simulation codes and better quality of publication.
- 6. Beam instrumentation improvement both in hardware and software has been carried out since 2018 experiment but missed JLab team to cross-check the data quality so as we missed the Schottky signal spectrum resolution. Big challenge to transverse Schottky signal processing (down converting) on bunched ion beam.
- 7. Balance core and tail cooling rates to reduce the double Gaussian distributions on the bunched beam cooling is an ultimate goal of next experiment in Dec. 2019
- 8. Uncertainties of travel on beam schedule, visa application and DOE approval processes