

Transforming JLEIC Lattice Files into CAD - Status and Path Forward

Tim Michalski

September 22, 2016

Overview

- The Baseline Designs looking at the Collider Rings
- The Lattice Files format
- From Lattice to CAD
- Items for consideration
- Making updates
- The Good, The Bad, and the Ugly
- Looking forward

Baseline Electron Collider Ring Layout

- Circumference of 2154.28 m = 2×754.84 m arcs + 2×322.3 straights
- Figure-8 crossing angle 81.7°

Forward e⁻ detection

Baseline Ion Collider Ring Layout

- Figure-8 ring with a circumference of 2153.9 m
- Two 261.7° arcs connected by two straights crossing at 81.7°
- Vertical doglegs to be added

The Lattice File

- The Nomenclature Field is added for machine elements matches JEDi
- 774 Elements in the Ion Collider Ring
- 1453 Elements in the Electron Collider Ring
- Does not yet include vacuum elements (valves, pumps, gauges), instrumentation and diagnostics (BPMs, SLMs, etc.)

	2153.89 m long M	EIC ion collider ring v	with one IP											
	The origin of the re	eference frame is com	nmon for the electror	n and ion collider rings and	is located at the crossing point of	f the electron figure	-8 ring. Elements are lis	ted in sequential	order starting at	the IP.				
	The coordinates a	re given at the end of	each element.		5.									
	S = positon along	the beam.								x	Z			
	(X,Y,Z) is a global	Cartesian coordinate	system, Y = vertical	axis. (X.Z) correspond to the	e symmetry axes of the figure 8.				-1	30.4563872	157,428907			
	THETA = horizonta	il angle.							1	29.3361743	155,2677489			
	PHI = vertical and	e.							-1	29.3361743	-155.2677489			
									1	29.8813467	-157.8684275			
	SBEND = sector b	end.												
	RBEND = rectange	ular bend.												
	Dipole lengths cor	respond to the arc ler	ngths along the orbit	t.										
	Dipole lengths list	ed below are magnet	tic lengths. Physical	length of each dipole is (14	+ magnetic length + 14) cm.									
	Solenoid lengths I	isted below are mag	netic lengths. Physic	al length of each solenoid i	is (14 + magnetic length + 14) cm.	I.								
	Quadrupole length	is listed below are ma	agnetic lengths. Phy	sical length of each quadru	pole (except those around the IP)) is (5 + magnetic le	ength + 5) cm.							
	Sextupole lengths	listed below are mad	gnetic lengths. Physi	cal length of each sextupole	e is (5 + magnetic length + 5) cm.									
	Physical lengths o	f bpms are 15 cm. Co	orrectors are combi	ined with sextupoles and k	kickers.									
	There are two 31.2	28 m long gaps in the	straight containing	the IP. They house two 30.2	28 m long electron cooling soleno	ids.								
	The second straig	ht is filled with FODO	D lattice and houses	20 m of SRF and 20 m of 1	warm RF.									
	Field strengths are	e given at 100 GeV/c.												
JEDI	NAME	TYPE T	LENGTH 💌	FIELD STRENGTH	New Field Strength Limit 💌	S 🔻	× X v	Y Y	-	Ζ 👻	THETA 💌	PHI 💌	REGION DEFINITION	1
	START					(0 73.4869613	в	0 -8	4.98541511	-0.662966999	0		
	DFFDS01	DRIFT	5	0		5	5 70.409671	1	0 -8	1.04456691	-0.662966999	0		
1-MDAD-000	BXSP01	RBEND	1.000001498	-2.000050344	2.000	6.000001498	B 69.7965787	4	0 -8	0.25455567	-0.656970991	0		
	DFFDS02	DRIFT	1	0		7.000001498	69.1858575	9	0 -7	9.46270993	-0.656970991	0		
1-MQAS-001	QFFDS01	QUADRUPOLE	1.2	-87.97323993	140.519	8.200001498	68.4529922	1	0 -7	8.51249504	-0.656970991	0		
	DFFDS03	DRIFT	1	0		9.200001498	67.8422710	5	0 .	77.7206493	-0.656970991	0		
1-MQAU-002	QFFDS02	QUADRUPOLE	2.4	50.73015062	50.73	11.6000015	5 66.3765403	1	0 -7	5.82021952	-0.656970991	0		
	DFFDS04	DRIFT	1	0		12.6000015	5 65.7658191	6	0 -7	5.02837378	-0.656970991	0		
1-MQAS-003	QFFDS03	QUADRUPOLE	1.2	-35.31124242	140.519	13.8000015	5 65.0329537	в	0 -7	4.07815889	-0.656970991	0		
	DFFDS05	DRIFT	4	0		17.8000015	5 62.5900691	в	0 -7	0.91077592	-0.656970991	0		
1-MDAF-004	BXSP02	SBEND	4	4.669564585	4.670	21.8000015	5 60.0598037	9	0 -6	7.81342597	-0.712966999	0		
	DFFDS06	DRIFT	16	0		37.8000015	5 49.5945084	6	0 -5	5.71063316	-0.712966999	0		
1-MCAB-004	BXYC	KICKER	0.5	0	0	38.3000015	5 49.2674679	в	0 -5	5.33242089	-0.712966999	0		
	DQSPDSE	DRIFT	0.05	0		38.3500015	5 49.2347639	3	0 -5	5.29459966	-0.712966999	0		
1-MQAQ-005	QSPDS01	QUADRUPOLE	0.8	59.35287152	79.731	39.1500015	5 48.7114991	7	0 -5	4.68946002	-0.712966999	0		
			0.05				10 5707054				0.740000000			

5

From Lattice File to CAD

- Lattice file in Excel Format
- Make adjustments, as required formatting columns, nomenclature, identifying unique components
- "NX_Component_Gen" Program Each Ring
 - Generates DXF of Points with associated Nomenclature
 - Cross reference CAD models of elements to lattice file
 - Automated assembly via NX Journaling adds element models to overall assembly
- Combine Machine Segments for Overall Assembly

Translated CASA Lattice

One of the files created has the extension .mc. The .mc file output is shown below in a text editor. This is the major file that is read by the NX Journal program.

The 1st column shows the JEDI Name

Column 2 shows the component name that will be pulled from the team center database.

The remaining columns contain the S, X, Y, Z coordinates plus the theta and phi rotation angles.

replace ****								
	Search	Navigate	Bookmarks	Extras		Active file		
×	Frame_NLNC01_20160819.txt	× nx_temp.dat	X MMC1P04.asf	× elic_r7.txt	× temp.d	lat X 🔶 elicR7.mc	×	
ts	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 20	3,0 4,0		1,,,,6,0,,,		8,0	<u>.90</u>
	1 name	type					theta	phi
	2 eS2-MCAA-000	MCAA	0.35000	125.26313	0.0000	0 -148.25168	-34.25000	0.0000
	3 eS2-MDAA-001	MDAA	0.00960	124.66038	0.0000	0 -147.39199	-35.35000	0.00000
c	4 eS2-BPMA-001	BPMA	2.72500	123.94425	0.0000	0 -146.39820	-36.45000	0.0000
a	5 eS2-MQAO-002	MQAO	3.10500	123.71848	0.0000	0 -146.09254	-36.45000	0.0000
IC.	6 eS2-MCAA-002	MCAA	3.61000	123.41845	0.0000	0 -145.68633	-36.45000	0.00000
	7 eS2-MFAB-002	MFAB	6.46000	121.72521	0.0000	0 -143.39386	-36.45000	0.00000
	8 eS2-MCAA-002	MCAA	9.21000	120.09137	0.0000	0 -141.18182	-36.45000	0.0000
	9 eS2-BPMA-002	BPMA	9.43500	119.95770	0.0000	0 -141.00084	-36.45000	0.00000
	10 eS2-MQAM-003	MQAM	10.14000	119.53884	0.0000	0 -140.43375	-36.45000	0.00000
	11 eS2-MQAM-004	MQAM	11.45000	118.76054	0.0000	0 -139.38002	-36.45000	0.00000
	12 eS2-MCAA-004	MCAA	12.33000	118.23772	0.0000	0 -138.67217	-36.45000	0.0000
	13 eS2-BPMA-004	BPMA	12.55500	118.10404	0.0000	0 -138.49119	-36.45000	0.00000
	14 eS2-MOAN-005	MOAN	13.46000	117.56636	0.0000	0 -137.76323	-36.45000	0.00000

7

Required component file

	Search	Navigate	Bookmarks	Extras
Ψ×	Frame_NLNC01_20160819.txt	X nx_temp.dat	× temp.dat ×	MMC1P04.asf
Lists	Q101	2,0	3,0,,,,,,,,,,,4,0,,,	
-	1 MCAA	,%UGMGR,MCAA,1	NONE, -	
	2 MDAA	,%UGMGR,MDAA,1	NONE, -	
	3 BPMA	,%UGMGR,BPMA,1	NONE, -	
d da	4 MQAO	,%UGMGR,MQAO,1	NONE, –	
a.ua	5 MFAB	,%UGMGR,MFAB,1	NONE, -	
ayın	6 MQAM	,%UGMGR,MQAM,1	NONE, -	
	7 MQAN	,%UGMGR,MQAN,1	NONE, -	
	8 MQAH	,%UGMGR,MQAH,1	NONE, -	
	9 MQAP	,%UGMGR,MQAP,1	NONE, -	
	10 MQSA	,%UGMGR,MQSA,1	NONE, -	
	11 MQAG	,%UGMGR,MQAG,1	NONE, -	
	12 MDAB	,%UGMGR,MDAB,1	NONE, -	
	13 MQAA	,%UGMGR,MQAA,1	NONE,-	
	14 MQAF	,%UGMGR,MQAF,1	NONE, -	
	15 MQAB	,%UGMGR,MQAB,1	NONE, -	
	16 MQAC	,%UGMGR,MQAC,1	NONE, -	
	17 JL-SA34111074	,%UGMGR,JL-SA	34111074,NONE,	
	18 MQAJ	,%UGMGR,MQAJ,1	NONE, -	
	19 MQAK	,%UGMGR,MQAK,1	NONE, -	
	20 MQAL	,%UGMGR,MQAL,1	NONE, -	
	21 RCAA	,%UGMGR,RCAA,I	NONE, -	
	22 JL-SA34111302	,%UGMGR,JL-SA	34111302,NONE,	
	23 JL-SA34111303	,%UGMGR,JL-SA	34111303,NONE,	
	24 MQAE	,%UGMGR,MQAE,1	NONE, -	
	25 MSAA	,%UGMGR,MSAA,1	NONE, -	
	26 MDAC	,%UGMGR,MDAC,1	NONE, -	
	27 MFAA	,%UGMGR,MFAA,1	NONE, -	
	28 MDAE	,%UGMGR,MDAE,I	NONE, -	
	29 JL-SA34111070	,%UGMGR,JL-SA	34111070, NONE,	
	30 JL-SA34111702	,%UGMGR,JL-SA	34111702 ,NONE	
	31			

JSA

The second file created has a .txt ending and the same prefix as the .mc file. These commands are used to connect to the Team Center database.

8

Running NX Journal File

The components should appear in the NX screen. The datum coordinate system arrows may appear. These can be shut off by pressing 'Ctrl + W', and turning off the Datum – Coordinate Systems. The final componets are shown in the blue figure 8 image. The figure 8 image was obtained by selecting the Orient View – Back, which shows a plan view of the data in the X/Z plane.

Checking for missing components

Number of Number of Number of	components in fil valid components problem component	e in: s 1	serted i not foun	into N nd in '	X c Tea	lrawing mCenter	::	2906 1688 1218
Number of	unique components						:	31
MCAA is a MDAA is a MQAO is a MQAM is a MQAN is a MQAH is a MQAP is a	valid component valid component valid component valid component valid component valid component valid component	: : : : : : : : : : : : : : : : : : : :	<pre>count = count =</pre>	= 660 = 55 = 48 = 64 = 16 = 40 = 8				
MQAG is a	valid component	:	count =	= 4				
MDAB is a	valid component	:	count =	- 8		Undo		
MQAA is a MQAF is a	valid component valid component	:	count = count =	= 8 = 2		Cut Copy		
MOAC is a	valid component	:	count =	= Z - 30		Paste		
MOAJ is a	valid component	÷	count =	- 30 - 110		Delete		
MQAK is a	valid component	:	count =	= 40		Select All		
MQAL is a	valid component	:	count =	= 20		Right to left Rea	adir	na order
RCAA is a	valid component	:	count =	= 64		Show Unicode	cont	frol characters
MDAC is a	valid component	:	count =	= 3		Insert Unicode of	cont	trol character
MOAE 15 a	valid component	:	count =	= 4 = 336		Open IME		
MQAD is a	valid component	:	count =	= 166		Reconversion		
BPMA is a MFAB is a MQSA is a MSAA is a MFAA is a JL-SA3411 JL-SA3411 JL-SA3411 JL-SA3411 JL-SA3411 JL-SA3411	problem component problem component problem component problem component problem component 1074 is a problem 1302 is a problem 1303 is a problem 1700 is a problem 1702 is a problem		<pre>count = count = count = count = nponent nponent nponent omponent</pre>	= 662 = 8 = 12 = 263 = 8 : cou: : cou: : cou: : cou: : cou:	nt nt nt unt	= 88 = 1 = 1 = 166 ; = 9		
Laiiy che	CK 2900							

After processing the file, a report is generated showing the valid components, the number of components inserted into the assembly and the components not inserted (name problems or else not created in Team Center).

Right click the memo if you wish to select and save the data to a report.

NX CAD Layout of ECR and ICR

Items for Consideration

Zoom In – ICR on Top, ECR on Bottom

Magnets from Arc to Arc

PEP-II RF Cavities

Listed as 1m length in Lattice File – the cavity is, but the assembly is not

ICR – RF Cavities – as currently defined

16

Ion Collider Ring Design Concept

*The following information is from the NSAC Cost Review – January, 2015

- 952.6 MHz HOM damped 1-cell cavities, modular JLab type cryomodule
- High frequency/high voltage for short bunch (re-bucket at energy)
- Lower power couplers , no synch. rad. Power.
- Tunable within one harmonic (harmonic jumps for path length changes with energy)
- Current limited by space charge (limits charge per bunch)
- Impedance is still a concern so HOM damping is still needed.

New HOM damped cavity concept

Electron Ring – Cross Over

JEDI 🚽	TYPE 🔻	LENGTH 💌	FIELD STRENGTH 💌	MAGNET FIELD GROUP	new s 💌	S 💌	X 💌	Y	Z ,T	THETA
eS2-MCAA-084	KICKER	0.3	0		196.1863778	112.4225469	-0.04648579	0	0.053759391	-0.712966999
eS2-BPMA-084	MONITOR	0.05	0		196.3363778	112.5725469	-0.144597933	0	0.167223073	-0.712966999
eS2-MQAJ-085	QUADRUPOLE	0.73	-13.23872118	17.53	197.1963778	113.4325469	-0.707107557	0	0.817748187	-0.712966999
eS1-MCAA-071	KICKER	0.3	0		1273.32793	1189.564099	-0.046485774	0	-0.053759387	3.854559653
eS1-BPMA-071	MONITOR	0.05	0		1273.47793	1189.714099	-0.144597918	0	-0.167223069	3.854559653
eS1-MQAJ-072	QUADRUPOLE	0.73	-13.23872118	17.53	1274.33793	1190.574099	-0.707107542	0	-0.817748183	3.854559653

Space for Bellows - ECR

Jefferson Lab

Spacing - Interfaces Between Elements

Need room to bolt elements together – consideration of multiple elements on "girder" assemblies if spacing is critical

Vertical Spacing

- 1.1m vertical spacing between ECR and ICR may yield element interferences
- Need to refine models for various elements to insure adequate spacing is allotted
- The more added detail, the higher confidence in averting space issues earlier in the process

Space for Upgrades

- Considerations for adding future features or energy increases (more Cryomodules) in the Ion Collider Ring
- Straights in Ion Collider Ring
 - Total DRIFT length in Lattice File = 491m
 - NE Quadrant (location of 2 x 30m Cooling Solenoids) = <u>136.2m</u>
 - NW Quadrant = 150.4 m
 - SE Quadrant (future IP region current SRF location) = <u>112.2m</u>
 - SW Quadrant (initial IP region) = $\underline{92.3m}$

Making Updates

- Get updated lattice file(s)
- Assess formatting, nomenclature, changes in elements
- Create new CAD models of new elements, as required
- Re-run the "NX_Component_Gen" Program
- Re-run the NX Journaling process on the affected segment of the machine
- Refresh top level assembly with updated revisions of affected machine segment(s)

The Good, The Bad, The Ugly

- The Good:
 - Can swap in updated models for individual or groups of elements
 - Can revise layout in hours versus days or weeks
 - Driven directly from the lattice files no fat fingered data issues
 - Nomenclature is available within the CAD models not yet tied to the individual elements
- The Bad:
 - Need to get the coordinate systems defined and consistent
 - As we go around the figure 8, the magnet orientation needs to flip from arc to arc - develop automated approach
- The Ugly:
 - Large assembly management will be crucial
 - Revision control of various segments will also be crucial
 - Needs more system components to further validate space utilization (vacuum, instrumentation, beam pipe, etc.)

Looking Forward

NEXT STEPS

- Generate the model for the other machine segments (Ion Booster Ring, Transfer Lines, Ion Injector and LINAC)
- Build confidence in the size and shape of the representative element CAD models
- Add detail to the PEP-II RF Cavities (with HOM loads)
- Add in Synchronization Chicanes in ECR Arcs
- Add the tunnel to the top level layout
- IMPROVEMENTS
 - Resolve magnet orientation from arc to arc
 - Tie nomenclature to metadata for individual elements
 - Tie in the "functional" regions of the machines versus just the "geographical" regions
 - Improve navigation within the CAD model (how to find what you want to look at)
 - Be able to highlight what changes

JT File and Viewer

JT2Go – Free JT File Viewer from Siemens – https://www.plm.automation.siemens.com/en_us/products/teamcenter/plmplatform-capabilities/visualization/jt2go/ JT2Go 11.2.2 - [JL0040190_A.jt] 3 23 R = Home View Render Analysis Manufacturing Tools Help JT2Go ☆ 🕜 🕳 🛱 🏼 🐇 🖩 🖗 🥂 🗄 🖿 🖩 Standard Views 🚺 🕅 💦 🍣 1 🔰 🗊 🦄 Ţ e¥ 2 🗈 上 🚄 🗔 🖓 🏌 🛄 Clipping \$ 🗊 🥝 Previous Next Automatic Navigation View View Motion Preferences Streaming Settings Window _ C 🏚 🥜 Navigation Window Orientation Style Performance 🛫 Menu 📲 👔 🖌 🖹 🧒 🔍 🖊 🕑 🗡 🏑 🕲 📦 📦 🌌 🖾 🗔 🕢 🗘 💆 **1**-Item Name Has PMI -> =C: Models 7 == - MMDAG_-V MQAQ BPMB_-MSXC MQAQ RPMR -MDAG_ MSXC MQAQ BPMB -MDAG_ Bee (BPMB -MSQB. BPMB -MQAQ_ MCAB -BPMB MOAO MCAB_ BPMB MQA MCAB -**BPMB MOAQ** MCAB_ MQAQ MCAB -MDAG_ MSQB BPMB_ MDAG MSXC_ MOAO BPMB_ MDAG MSXC_ MOAO W BPMB MDAG MSXC_ MQAQ BPMB_ MDAG -MSXC MQAQ **BPMB** MDAG -MSXC MQAQ BPMB -For Help, press F1 Mem: 287.6M/6141.5M AA-4 (HAM

Thank you for your attention.

Questions???

Special thank you to Butch Dillon-Towns, Ron Lassiter, and especially Kelly Tremblay for developing the semi-automated process

