JLEIC cost: 200GeV vs 100GeV

Background

- At the mid-February meeting of the JLab Accelerator Advisory Committee, there was discussion of pushing to 200 GeV to cover the full √s range in the White Paper. Consequently we received a recommendation to look at increasing the ion ring to handle 200 GeV protons.
- Bob McKeown asked for preliminary cost estimates to be ready for Science Council meeting in September
 - Build for 200 GeV
 - Build for 100 GeV and later upgrade to 200 GeV
- How to get there
 - Keep it simple:
 - Nominal change that had been presented was to double the fields in the ion ring.
 - Unstated but "obvious": little change in average luminosity over present operating range.

Laundry list: Stuff that got changed

- Doubled magnet fields in arcs and straights
 - New cost came from scaling TAMU number for 3T $\cos\theta$ dipole
 - Used 3x on cold mass: split difference between TAMU's ~2x for superferric and the canonical 4x (proportional to stored energy)
 - $\frac{1}{2}$ -cell: \$239k for 3T superferric, \$1030k for 6T cos θ
 - Increased magnet power (4x to keep ramping time fixed)
- Doubled lengths of RF fields
 - 2x acceleration (keep ramping time fixed)
 - 2x cryomodules: bunch control and crabbing

Laundry list: Stuff that got changed (cont'd)

- Doubled energy of HE cooler
- Adjusted cryo plant for extra load from cryomodules
- LCW increase for additional magnet and RF power
- Service building space for RF
- All the associated labor (mostly for installing extra stuff)
- Updated "judgement" contingency
- PED, OH, and escalation treated as before

Laundry list: Stuff that was not changed

- Stuff around IP: would be too much of a WAG
- Site power
- Magnet power supply building size
- LCW distribution in tunnel
- Tunnel length
 - Would likely have to change in order to accommodate the additional RF cavities and potential changes in IP unless lattice is tightened up
 - Effort to redesign the lattice is nontrivial \Rightarrow don't do it right now

And the answer is.....

100 GeV: \$1.48 B

200 GeV: \$1.98 B*

*Nb: Real increase is higher. Some items were not addressed and the magnet costs could well be higher than what was used.

Next: Do the evolutionary scenario

1. Decisions

- How much "200 GeV" gets included in "100 GeV"
- How much "100 GeV" gets thrown away

- 2. Crank the numbers
 - The cost for "100 GeV" will be somewhat higher than the baseline
 - The net cost for "200 GeV" will be higher, too
 - ~\$70M for "100 GeV" arc ¹/₂-cells alone, which would get added on top of the \$1.98B.

Questions?