Magnetized Beam LDRD

FAY HANNON 11/10/2015

Measurements

• Phase 1

• Thermal emittance (solenoid scan)

• Phase2: With space charge

• Emittance

• Magnetization (If we can source a magnet)

• Phase 3:

- Magnetization
- Round to Flat transform

What emittance do we measure

 Transverse normalized rms phase space emittance. Output from ASTRA – based on canonical variables

•
$$\frac{1}{\langle m_e \rangle} \sqrt{\langle x^2 \rangle \langle p_x^2 \rangle - \langle x.p_x \rangle^2}$$

Geometric emittance

•
$$\frac{1}{\langle E \rangle} \sqrt{\langle x^2 \rangle \langle p_x^2 \rangle - \langle x.p_x \rangle^2}$$

 Transverse normalized rms trace space emittance based on geometrical parameters. Typically measured in machines as x' is observed rather than px. Only differs from canonical emittance when larege energy spread or divergence.

•
$$\frac{\langle E \rangle}{m_e} \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle x.x' \rangle^2}$$

• Can't do solenoid scan as SC/CAM dominated.

• Exception is thermal emittance

• Vary solenoid, change emittance, SC non-linear, so can't make a fit.

• Multi slit

• If beam is very divergent, beamlets will overlap. Difficult to fit, then interpolate to give phase space.

Double slit

• Use correctors to scan one slit, then the other and collect particles with Fcup. 3 diagnostic crosses.

Single slit

• Use correctors to scan one slit, image on viewer and process to get phase space. 2 diagnostic crosses

For a good measurement need

- o Laminar beam ish
- Reasonable size at slit
- Narrow, thin slit

With solenoid at present location beam is big – gets lost on beam pipe

- Redesign beamline to locate the slits closer to the solenoid
- Carefully choose slit dimensions and separation between slits.

Sample result

Green, particles that make it through the slit

Double slit virtual experiment

• Simulate 500k particles from cathode to location of the diagnostic

Parameter	
Cathode Bz	0.2T
XY_rms, top-hat	1.5mm
t rms, Gaussian	23ps
Charge	0-420pC
Gun voltage	350kV

20pC, 100pC, 210pC, 420pC

TRANSPORT THE SAME: DOMINATED by canonical angular momentum!

Longitudinally we see space charge as usual.

Double slit virtual experiment

- At the diagnostic, break the beam up into beamlets transversely to simulate the beam scanning over the slit
- Let the beamlet particles drift to the second slit location (removing any that intercept the diagnostic)
- Break the beamlet up into more beamlets
- Count particles in each sub beamlet
- Produce phase space

Virtual result

Directly from simulation

Reconstructed via 2 slit method

Can change slit size and spacing to get best design

Magnetization

Magnetization

- This is a real experiment we would like to do to measure magnetization.
- Insert a slit into the beamline to select an emittancedominated beamlet.
- Let the beamlet drift to a screen and image it.

•
$$< L >= \frac{2p_z\sigma_1\sigma_2\sin\theta}{D} = B_zea_0^2$$

• σ_1 : beam rms at diagnostic cross 1

- σ_2 : beam rms at diagnostic cross 1
- D: drift between diagnostics, *θ*: angular rotation, pz : longitudinal momentum

Magnetization virtual experiment

Blue – beam at the slit (500k, 20um

slit)

Red – particles selected by slit Green – particles tracked to screen 0.26m away

Not linear!

Assumes a solenoid at cathode with 0.2T peak 0.07% particles through slit

This isn't charge related.

Ldrd.009.0100.00 Fay Hannon Ldrd.009.0100.00 4 Nrad=70, Nlong_in=100

Phase space plots

This is what the slit cuts out in phase space

Why is there an 'S'?

This is the solenoid field I used...

Why is there an 'S'?

- This is what simulation assumes off axis
- Slight variation

Why is there an 'S'?

Make fake field map.

Fay Hannon

Make fake Helmholz pair field

Compare

Both 420pC

Fake Helmholtz coil

Ldrd.010.001

Standard solenoid

Ldrd.009.001

Magnetization virtual experiment

Fay Hannon

'S'

Ldrd.013.001-004

Is the trick to keep beam small in beamline solenoids?

 Trying not to have different B.dl over transverse direction.

Could this explain difference between helmholtz and normal sol

Focusing solenoid here

CAM dominated

Ldrd.023

So what does the emittance look like

Remove the contribution from angular momentum. Calculate the angular momentum from a correlation in the x, px phase space and subtract prior to the emittance calculation.

Reverse polarity of EC solenoid

• No space charge case

Conclusions

- Beam is CAM dominated
- Good cathode field uniformity not as important as keeping beam from blowing up
- In essence, try to approximate transport in a continuous solenoid with discrete magnets