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MoCvaCon	
  
•  In	
  high-­‐luminosity	
  collider	
  machines,	
  to	
  lower	
  down	
  the	
  lepton	
  beam	
  

emiHance,	
  people	
  usually	
  use	
  damping	
  wigglers	
  to	
  achieve	
  the	
  goal	
  by	
  
extracCng	
  a	
  large	
  fracCon	
  of	
  the	
  synchrotron	
  radiaCon	
  and	
  thus	
  increasing	
  
the	
  radiaCon	
  damping	
  rate	
  (or,	
  shortening	
  the	
  damping	
  Cme).	
  

•  Fanglei’s	
  previous	
  presentaCon	
  (Feb.	
  5,	
  MEIC	
  R&D	
  MeeCng)	
  about	
  
potenCal	
  damping	
  wiggler	
  design	
  for	
  MEIC	
  reminds	
  me	
  about	
  J.	
  Wu	
  et	
  al.	
  
work:	
  	
  
–  J.	
  Wu,	
  T.	
  O.	
  Raubenheimer,	
  and	
  G.	
  V.	
  Stupakov,	
  CalculaCon	
  of	
  the	
  coherent	
  synchrotron	
  

radiaCon	
  impedance	
  from	
  a	
  wiggler,	
  PRST-­‐AB	
  6,	
  040701	
  (2003)	
  
–  J.	
  Wu,	
  G.	
  V.	
  Stupakov,	
  T.	
  O.	
  Raubenheimer,	
  and	
  Z.	
  Haung,	
  Impact	
  of	
  wiggler	
  coherent	
  

synchrotron	
  radiaCon	
  impedance	
  on	
  the	
  beam	
  instability	
  and	
  damping	
  ring	
  
opCmizaCon,	
  PRST-­‐AB	
  6,	
  104404	
  (2003)	
  

•  The	
  following	
  slides	
  demonstrate	
  some	
  results	
  reproduced	
  from	
  the	
  above	
  
two	
  papers,	
  and	
  apply	
  the	
  developed	
  code	
  to	
  MEIC	
  e-­‐Ring	
  case.	
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Outline	
  
•  Basic	
  theory	
  and	
  assumpCon	
  
•  CSR	
  impedance	
  from	
  a	
  wiggler	
  
•  Underlying	
  physics	
  
•  ApplicaCon:	
  MEIC	
  e-­‐Ring	
  with	
  damping	
  wiggler	
  
•  Summary	
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TheoreCcal	
  background	
  
•  step	
  1:	
  Vlasov	
  equaCon,	
  with	
  longitudinal	
  equaCons	
  of	
  moCon,	
  

•  step	
  2:	
  adding	
  a	
  (harmonic)	
  perturbaCon	
  
	
  
•  step	
  3:	
  linearizaCon	
  of	
  Vlasov	
  equaCon	
  

•  step	
  4:	
  dispersion	
  equaCon	
  

4	
  

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 5, 054402 (2002)

Beam instability and microbunching due to coherent synchrotron radiation

G. Stupakov and S. Heifets
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

(Received 7 February 2002; published 21 May 2002)
A relativistic electron beam moving in a circular orbit in free space can radiate coherently if the wave-

length of the synchrotron radiation exceeds the length of the bunch. In accelerators coherent synchrotron
radiation of the bunch is usually suppressed by the shielding effect of the conducting walls of the vac-
uum chamber. However an initial density fluctuation with a characteristic length much shorter than the
bunch length can radiate coherently. If the radiation reaction force results in the growth of the initial
fluctuation, one can expect an instability which leads to microbunching of the beam and an increased
coherent radiation at short wavelengths. Such an instability is studied theoretically in this paper.

DOI: 10.1103/PhysRevSTAB.5.054402 PACS numbers: 41.75.Jv, 41.75.Ht

A relativistic electron beam moving in a circular orbit
in free space can radiate coherently if the wavelength of
the synchrotron radiation exceeds the length of the bunch.
In accelerators coherent radiation of the bunch is usually
suppressed by the screening effect of the conducting walls
of the vacuum chamber [1–3]. The screening effect is
much less effective for short wavelengths, but if the wave-
length is shorter than the length of the bunch (assuming a
smooth beam profile), the coherent radiation becomes ex-
ponentially small. However, an initial density fluctuation
with a characteristic length much shorter than the screen-
ing threshold would radiate coherently. If the radiation
reaction force is directed so that it results in the growth
of the initial fluctuation one can expect an instability that
leads to microbunching of the beam and an increased
coherent radiation at short wavelengths. Experimentally
self-excited coherent microwave radiation has been ob-
served in the National Synchrotron Light Source (NSLS)
VUV ring at Brookhaven National Laboratory [4], at the
Synchrotron Ultraviolet Radiation Facility at the National
Institute of Standards and Technology [5], and at the Ad-
vanced Light Source (ALS) at the Lawrence Berkelely
Laboratory [6]. Microbunching in numerical simulations
of a bunch compressor was reported in Ref. [7] and, more
recently, was found in the simulations of the Linac Coher-
ent Light Source bunch compressor [8].
A beam microwave instability induced by the coherent

radiation of the density fluctuations is studied theoretically
in this paper. Throughout this paper we assume that the
characteristic wavelength of the instability is small com-
pared to the bunch length. In this case, the development of
the instability is governed by the local value of the beam
current and one can simplify consideration neglecting vari-
ation of the beam density within the bunch.
Consider a coasting beam of energy E0 moving in a cir-

cular orbit of radius R in free space. Let us use !d, z"
variables, where d is the relative energy offset of a par-
ticle, d ! !E 2 E0"#E, z is the longitudinal coordinate
measured relative to the reference particle with the nomi-
nal energy, and s ! ct.

The beam is described by the longitudinal distri-
bution function r!d, z, s" normalized so that dN !
dz

R

r!d, z, s" dd gives the number of particles at point z
within an infinitesimal interval dz. For an instability that
is slow compared to the frequency of the betatron oscil-
lations vb , jvj ø vb , one can use a one-dimensional
Vlasov equation for the distribution function r [9]:

≠r

≠s
2 hd

≠r

≠z
2

r0

g

≠r

≠d

Z `

2`
dz0 dd0 W!z 2 z0"r!d0, z0, s" ! 0 , (1)

where h is the slip factor, r0 is the classical electron radius,
and the wake function per unit length of the path W!z 2
z0" describes the interaction with the coherent synchrotron
radiation (CSR). In this equation we omitted the effects
of the incoherent synchrotron radiation damping. Such an
approximation is valid if the growth rate of the instability is
much faster than the inverse synchrotron radiation damp-
ing time.
Neglecting the screening effect of conducting walls we

will use the wake function corresponding to the steady-
state radiation of an ultrarelativistic particle (g ¿ 1) in a
long magnet [10,11],

W!z" !
2

!3R2"1#3

≠

≠z
z21#3 for z . 0 , (2)

and W!z" ! 0 for z # 0. Note that unlike the traditional
wake the radiation wakefield is localized in front of the
moving charge. Equation (2) neglects transient effects oc-
curring at the entrance to and exit from the magnet.
We represent the distribution function r as a sum of the

equilibrium distribution function r0 and a perturbation r1,
r ! r0!d" 1 r1!d, z, s" , (3)

with r1 ø r0. Note that the equilibrium beam density
(number of particles per unit length) nb is equal to nb !
R

r0!d" dd, and the density perturbation n1 is given by
n1!z, s" !

R

r1!d, z, s" dd. Linearizing Eq. (1) and as-
suming that
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r1 ! r̂1e2ivs!c1ikz , (4)
where k is the wave number of the perturbation, we find

"v 1 ckhd#r̂1 ! i
r0c
g

≠r0

≠d
Z"k#

Z

dd r̂1"d# , (5)

where

Z"k# !
Z `

0
dz W"z #e2ikz

!
2ik1!3

31!3R2!3

Z `

0
dj j21!3e2ij ! 2iA

k1!3

R2!3 .

(6)

The complex factor A is

A ! 321!3G

µ

2
3

∂

"
p

3 i 2 1# ! 1.63i 2 0.94 , (7)

where G is the complete gamma function.
The nontrivial solution of Eq. (5)

r̂1 !
icr0Z"k#

g"v 1 ckhd#
dr0

dd
n̂1 (8)

exists if v satisfies the dispersion relation

1 !
ir0cZ"k#

g

Z dd "dr0!dd#
v 1 ckhd

, (9)

where n̂1 in Eq. (8) is the amplitude of the density per-
turbation, n̂1 !

R

dd r̂1. For the Gaussian distribution
function, r0 ! nb"2p#21!2 exp"2d2!2d2

0#, where d0 is
the rms relative energy spread, we can write Eq. (9) in
the following form:

"kR#2!3

L
! 2

Ap
2p

Z `

2`

dp pe2p2!2

V 6 p
, (10)

where

L !
nbr0

jhjgd2
0

, (11)

V ! v!ckjhjd0, and the upper (lower) sign in Eq. (10)
refers to the case of positive (negative) h. As always
in stability theory, the integral on the right-hand side of
Eq. (9) defines the dispersion function in the upper half
plane of the complex variablev; the values of this function
for Imv , 0 are obtained by analytic continuation of the
integral into the lower half plane.
The plot of the normalized frequency v as a function of

the wave number k obtained by the numerical solution of
Eq. (10) for the positive value of h is shown in Fig. 1.
The imaginary part of the frequency is positive, and the

beam is unstable, for
kR , 2.0L3!2. (12)

The maximum growth rate is reached at k ! 0.68L3!2!R
and is equal to "Imv#max ! 0.43L3!2cjhjd0!R. Note that
the condition for the instability is easier to satisfy for a
beam with a small energy spread, since L ~ 1!d2

0 . This
condition does not take into account the finite bunch length,

FIG. 1. (Color) The imaginary (Im) and real (Re) parts of the
frequency v as functions of kR!L3!2, for a positive value of h.
For negative values of k, the frequency can be found from the
relation v"2k# ! 2v!"k# which follows from Eq. (9).

the screening effect of the vacuum chamber walls, and the
beam emittance (see below).
The numerical solution for a negative value of h gives a

higher threshold for the instability kR , 0.92L3!2 with the
maximum growth rate "Imv#max ! 0.16L3!2cjhjd0!R at
k ! 0.31L3!2!R.
From the dispersion relation Eq. (9) it is easy to obtain

an explicit expression for the frequency of the instability
in the limit of a cold beam, when k ø L3!2!R,

v ! c
µ

Ar0k4!3nbh

gR2!3

∂1!2

. (13)

For a bunched beam of length sz with N particles in the
bunch, our results obtained in the coasting-beam approxi-
mation can be applied if the reduced wavelength of the
modulation 1!k is much smaller than the bunch length,
ksz ¿ 1. In this case the instability is controlled by
the local value of the linear particle density nb , with the
maximum value of nb , for a Gaussian bunch, equal to
N!

p
2p sz . Since k is limited from above by the require-

ment (12), the microbunching instability can develop if the
bunch length is large enough

sz * 0.5RL23!2. (14)
Another limitation to the theory is introduced by a finite

aperture b of the beam pipe. Assuming a pipe with a per-
fect conductivity, the CSR is suppressed due to the shield-
ing effect at low harmonics with wave numbers k such
that kR & "pR!2b#3!2 [12]. Hence the instability can
only develop for such values of k that 2.0L3!2 . kR *
"pR!2b#3!2. The requirement that the lower limit for the
parameter kR is smaller than the upper one gives another
necessary condition for the instability:

R
b

& L . (15)

If this inequality is not satisfied, finite energy spread in
the beam suppresses the small-scale instability where the
effect of the screening is not essential. Note that for
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the beam suppresses the small-scale instability where the
effect of the screening is not essential. Note that for
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r1 ! r̂1e2ivs!c1ikz , (4)
where k is the wave number of the perturbation, we find

"v 1 ckhd#r̂1 ! i
r0c
g

≠r0

≠d
Z"k#

Z

dd r̂1"d# , (5)

where

Z"k# !
Z `

0
dz W"z #e2ikz

!
2ik1!3

31!3R2!3

Z `

0
dj j21!3e2ij ! 2iA

k1!3

R2!3 .

(6)

The complex factor A is

A ! 321!3G

µ

2
3

∂

"
p

3 i 2 1# ! 1.63i 2 0.94 , (7)

where G is the complete gamma function.
The nontrivial solution of Eq. (5)

r̂1 !
icr0Z"k#

g"v 1 ckhd#
dr0

dd
n̂1 (8)

exists if v satisfies the dispersion relation

1 !
ir0cZ"k#

g

Z dd "dr0!dd#
v 1 ckhd

, (9)

where n̂1 in Eq. (8) is the amplitude of the density per-
turbation, n̂1 !

R

dd r̂1. For the Gaussian distribution
function, r0 ! nb"2p#21!2 exp"2d2!2d2

0#, where d0 is
the rms relative energy spread, we can write Eq. (9) in
the following form:

"kR#2!3

L
! 2

Ap
2p

Z `

2`

dp pe2p2!2

V 6 p
, (10)

where

L !
nbr0

jhjgd2
0

, (11)

V ! v!ckjhjd0, and the upper (lower) sign in Eq. (10)
refers to the case of positive (negative) h. As always
in stability theory, the integral on the right-hand side of
Eq. (9) defines the dispersion function in the upper half
plane of the complex variablev; the values of this function
for Imv , 0 are obtained by analytic continuation of the
integral into the lower half plane.
The plot of the normalized frequency v as a function of

the wave number k obtained by the numerical solution of
Eq. (10) for the positive value of h is shown in Fig. 1.
The imaginary part of the frequency is positive, and the

beam is unstable, for
kR , 2.0L3!2. (12)

The maximum growth rate is reached at k ! 0.68L3!2!R
and is equal to "Imv#max ! 0.43L3!2cjhjd0!R. Note that
the condition for the instability is easier to satisfy for a
beam with a small energy spread, since L ~ 1!d2

0 . This
condition does not take into account the finite bunch length,

FIG. 1. (Color) The imaginary (Im) and real (Re) parts of the
frequency v as functions of kR!L3!2, for a positive value of h.
For negative values of k, the frequency can be found from the
relation v"2k# ! 2v!"k# which follows from Eq. (9).

the screening effect of the vacuum chamber walls, and the
beam emittance (see below).
The numerical solution for a negative value of h gives a

higher threshold for the instability kR , 0.92L3!2 with the
maximum growth rate "Imv#max ! 0.16L3!2cjhjd0!R at
k ! 0.31L3!2!R.
From the dispersion relation Eq. (9) it is easy to obtain

an explicit expression for the frequency of the instability
in the limit of a cold beam, when k ø L3!2!R,

v ! c
µ

Ar0k4!3nbh

gR2!3

∂1!2

. (13)

For a bunched beam of length sz with N particles in the
bunch, our results obtained in the coasting-beam approxi-
mation can be applied if the reduced wavelength of the
modulation 1!k is much smaller than the bunch length,
ksz ¿ 1. In this case the instability is controlled by
the local value of the linear particle density nb , with the
maximum value of nb , for a Gaussian bunch, equal to
N!

p
2p sz . Since k is limited from above by the require-

ment (12), the microbunching instability can develop if the
bunch length is large enough

sz * 0.5RL23!2. (14)
Another limitation to the theory is introduced by a finite

aperture b of the beam pipe. Assuming a pipe with a per-
fect conductivity, the CSR is suppressed due to the shield-
ing effect at low harmonics with wave numbers k such
that kR & "pR!2b#3!2 [12]. Hence the instability can
only develop for such values of k that 2.0L3!2 . kR *
"pR!2b#3!2. The requirement that the lower limit for the
parameter kR is smaller than the upper one gives another
necessary condition for the instability:

R
b

& L . (15)

If this inequality is not satisfied, finite energy spread in
the beam suppresses the small-scale instability where the
effect of the screening is not essential. Note that for

054402-2 054402-2

where, the slippage factor is defined as

! ! "" 1

#2 ; (2)

with " equal to the momentum compaction factor and #
is the Lorentz factor. For ultrarelativistic beams, we have
! # ". Based on our definition of s, the sign convention
for " is then the following. If a particle with a higher
energy than the nominal energy, i.e., $ > 0, would go to
the head of the bunch, then the beam line provides a
negative ". According to this convention, then in a simple
bending magnet, we will have " > 0, while in a wiggler,
we have "< 0. In Eq. (1), r0 # 2:82$ 10"15 m is the
electron classical radius, and w%s& is the wake Green
function describing the interaction of two particles due
to the synchrotron radiation. The wake Green function
w%s& ! 0 for s > 0 while w%s& ! 0 for s < 0. The positive
values of w%s& correspond to the energy loss and the
negative values imply the energy gain.

The distribution function % is written as a sum of the
equilibrium distribution function and a perturbation, % !
%0%$& ' %1%$; s; z&, with %1 ( %0. We look for a pertur-
bation as

%1 ! %̂%1e"i!z=c'iks; (3)

where k is the wave number and ! the frequency.
Linearizing the 1D Vlasov Eq. (1) leads to the dispersion
relation [9]:

1 ! ir0cZ%k&
#

Z 1

"1
d$

d%0=d$
!' ck!$

; (4)

which determines the existence of a solution as in Eq. (3).
Here,

Z%k& !
Z 1

0
dsw%s&e"iks (5)

is the CSR impedance.
We assume that the initial energy distribution function

is a Gaussian, i.e., %0 ! n0=%
!!!!!!!

2&
p

$0& exp%"$2=2$2
0&,

where n0 is the peak linear density, i.e., the number of
particles per unit length. In this case, Eq. (4) can be
rewritten as

1 ! " iZ%k&!
!!!!!!!

2&
p

k

Z 1

"1
dp

pe"p2=2

") p
; (6)

where ! ! n0r0=%j!j#$2
0&, " ! !=%ckj!j$0&, and p !

$=$0. The upper (lower) sign in Eq. (6) refers to the
case of a positive (negative) !.

III. STORAGE RINGS WITH WIGGLERS

As mentioned, a number of storage rings utilize long
damping wigglers where a significant fraction of the
energy loss per turn is emitted. To study the impact of
the CSR impedance from wiggler on the beam instability,

we study the existing high-luminosity factories [10–13].
Furthermore, we study the damping rings being designed
for the future linear colliders. These damping rings are
the NLC main damping ring [16], the TESLA damping
ring [17], and also the existing KEK ATF prototype
damping ring [18]. Nominal parameters for these damp-
ing rings are given in Table I. Calculation on the existing
high-luminosity factories indicates that they all operate
well below the instability threshold for the frequencies
higher than the vacuum chamber ‘‘shielding cutoff ’’ [3],
hence we will not present details in this paper. On the
other hand, for the damping rings of the future linear
colliders, the CSR induced instability could be a big
concern. Hence, in this paper, we will show how we could
avoid such CSR instability and eventually how to opti-
mize the damping ring design. To explore such a problem,
in this section, we give details on the growth rate and
threshold for typical damping rings, while leaving the
optimization to Sec. IV.

In our paper, we use the steady state CSR impedance
and assume a distributed impedance model. For a dipole,
the steady state CSR impedance is [1,2]

ZD%k& ! "iA
k1=3

R2=3
; (7)

with

A ! 3"1=3#%23&%
!!!

3
p

i" 1&: (8)

The wiggler impedance ZW%k& is computed in Ref. [14].
Hence, the total impedance is then

Z%k& ! ZD%k&
$R
C

' ZW%k&
LW

C
; (9)

where, R, $, LW , and C are the dipole bending radius, the
total bending angle, the wiggler total length, and the
damping ring circumference given in Table I, respec-
tively. To study the instability, we solve the dispersion
relation given in Eq. (6). Since we are assuming a coasting
beam model, we consider only instability wavelengths
short compared to the bunch length.

In Fig. 1, the imaginary part of " is plotted as a
function of the instability wave number for the NLC
main damping ring using the parameters listed in
Table I. At low frequencies, the dipole CSR impedance
dominates while at shorter wavelengths the wiggler CSR
impedance is usually more important. In the region where
Im%"&< 0, the beam is stable and this is true for all
regions except at the longest wavelengths as shown in
the inset. This low-frequency instability will be discussed
in the following paragraphs of this section. Similar cal-
culations were made for the TESLA ‘‘dog-bone’’ damping
ring, where the total bending angle is about $ ! 10&=3,
and the KEK ATF prototype damping ring. For the
design current in the TESLA damping ring, the CSR
impedance from the dipoles and wigglers will not drive
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where, the slippage factor is defined as

! ! "" 1

#2 ; (2)

with " equal to the momentum compaction factor and #
is the Lorentz factor. For ultrarelativistic beams, we have
! # ". Based on our definition of s, the sign convention
for " is then the following. If a particle with a higher
energy than the nominal energy, i.e., $ > 0, would go to
the head of the bunch, then the beam line provides a
negative ". According to this convention, then in a simple
bending magnet, we will have " > 0, while in a wiggler,
we have "< 0. In Eq. (1), r0 # 2:82$ 10"15 m is the
electron classical radius, and w%s& is the wake Green
function describing the interaction of two particles due
to the synchrotron radiation. The wake Green function
w%s& ! 0 for s > 0 while w%s& ! 0 for s < 0. The positive
values of w%s& correspond to the energy loss and the
negative values imply the energy gain.

The distribution function % is written as a sum of the
equilibrium distribution function and a perturbation, % !
%0%$& ' %1%$; s; z&, with %1 ( %0. We look for a pertur-
bation as

%1 ! %̂%1e"i!z=c'iks; (3)

where k is the wave number and ! the frequency.
Linearizing the 1D Vlasov Eq. (1) leads to the dispersion
relation [9]:

1 ! ir0cZ%k&
#

Z 1

"1
d$

d%0=d$
!' ck!$

; (4)

which determines the existence of a solution as in Eq. (3).
Here,

Z%k& !
Z 1

0
dsw%s&e"iks (5)

is the CSR impedance.
We assume that the initial energy distribution function

is a Gaussian, i.e., %0 ! n0=%
!!!!!!!

2&
p

$0& exp%"$2=2$2
0&,

where n0 is the peak linear density, i.e., the number of
particles per unit length. In this case, Eq. (4) can be
rewritten as

1 ! " iZ%k&!
!!!!!!!

2&
p

k

Z 1

"1
dp

pe"p2=2

") p
; (6)

where ! ! n0r0=%j!j#$2
0&, " ! !=%ckj!j$0&, and p !

$=$0. The upper (lower) sign in Eq. (6) refers to the
case of a positive (negative) !.

III. STORAGE RINGS WITH WIGGLERS

As mentioned, a number of storage rings utilize long
damping wigglers where a significant fraction of the
energy loss per turn is emitted. To study the impact of
the CSR impedance from wiggler on the beam instability,

we study the existing high-luminosity factories [10–13].
Furthermore, we study the damping rings being designed
for the future linear colliders. These damping rings are
the NLC main damping ring [16], the TESLA damping
ring [17], and also the existing KEK ATF prototype
damping ring [18]. Nominal parameters for these damp-
ing rings are given in Table I. Calculation on the existing
high-luminosity factories indicates that they all operate
well below the instability threshold for the frequencies
higher than the vacuum chamber ‘‘shielding cutoff ’’ [3],
hence we will not present details in this paper. On the
other hand, for the damping rings of the future linear
colliders, the CSR induced instability could be a big
concern. Hence, in this paper, we will show how we could
avoid such CSR instability and eventually how to opti-
mize the damping ring design. To explore such a problem,
in this section, we give details on the growth rate and
threshold for typical damping rings, while leaving the
optimization to Sec. IV.

In our paper, we use the steady state CSR impedance
and assume a distributed impedance model. For a dipole,
the steady state CSR impedance is [1,2]

ZD%k& ! "iA
k1=3

R2=3
; (7)

with

A ! 3"1=3#%23&%
!!!

3
p

i" 1&: (8)

The wiggler impedance ZW%k& is computed in Ref. [14].
Hence, the total impedance is then

Z%k& ! ZD%k&
$R
C

' ZW%k&
LW

C
; (9)

where, R, $, LW , and C are the dipole bending radius, the
total bending angle, the wiggler total length, and the
damping ring circumference given in Table I, respec-
tively. To study the instability, we solve the dispersion
relation given in Eq. (6). Since we are assuming a coasting
beam model, we consider only instability wavelengths
short compared to the bunch length.

In Fig. 1, the imaginary part of " is plotted as a
function of the instability wave number for the NLC
main damping ring using the parameters listed in
Table I. At low frequencies, the dipole CSR impedance
dominates while at shorter wavelengths the wiggler CSR
impedance is usually more important. In the region where
Im%"&< 0, the beam is stable and this is true for all
regions except at the longest wavelengths as shown in
the inset. This low-frequency instability will be discussed
in the following paragraphs of this section. Similar cal-
culations were made for the TESLA ‘‘dog-bone’’ damping
ring, where the total bending angle is about $ ! 10&=3,
and the KEK ATF prototype damping ring. For the
design current in the TESLA damping ring, the CSR
impedance from the dipoles and wigglers will not drive
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where, the slippage factor is defined as

! ! "" 1

#2 ; (2)

with " equal to the momentum compaction factor and #
is the Lorentz factor. For ultrarelativistic beams, we have
! # ". Based on our definition of s, the sign convention
for " is then the following. If a particle with a higher
energy than the nominal energy, i.e., $ > 0, would go to
the head of the bunch, then the beam line provides a
negative ". According to this convention, then in a simple
bending magnet, we will have " > 0, while in a wiggler,
we have "< 0. In Eq. (1), r0 # 2:82$ 10"15 m is the
electron classical radius, and w%s& is the wake Green
function describing the interaction of two particles due
to the synchrotron radiation. The wake Green function
w%s& ! 0 for s > 0 while w%s& ! 0 for s < 0. The positive
values of w%s& correspond to the energy loss and the
negative values imply the energy gain.

The distribution function % is written as a sum of the
equilibrium distribution function and a perturbation, % !
%0%$& ' %1%$; s; z&, with %1 ( %0. We look for a pertur-
bation as

%1 ! %̂%1e"i!z=c'iks; (3)

where k is the wave number and ! the frequency.
Linearizing the 1D Vlasov Eq. (1) leads to the dispersion
relation [9]:

1 ! ir0cZ%k&
#

Z 1

"1
d$

d%0=d$
!' ck!$

; (4)

which determines the existence of a solution as in Eq. (3).
Here,

Z%k& !
Z 1

0
dsw%s&e"iks (5)

is the CSR impedance.
We assume that the initial energy distribution function

is a Gaussian, i.e., %0 ! n0=%
!!!!!!!

2&
p

$0& exp%"$2=2$2
0&,

where n0 is the peak linear density, i.e., the number of
particles per unit length. In this case, Eq. (4) can be
rewritten as

1 ! " iZ%k&!
!!!!!!!

2&
p

k

Z 1

"1
dp

pe"p2=2

") p
; (6)

where ! ! n0r0=%j!j#$2
0&, " ! !=%ckj!j$0&, and p !

$=$0. The upper (lower) sign in Eq. (6) refers to the
case of a positive (negative) !.

III. STORAGE RINGS WITH WIGGLERS

As mentioned, a number of storage rings utilize long
damping wigglers where a significant fraction of the
energy loss per turn is emitted. To study the impact of
the CSR impedance from wiggler on the beam instability,

we study the existing high-luminosity factories [10–13].
Furthermore, we study the damping rings being designed
for the future linear colliders. These damping rings are
the NLC main damping ring [16], the TESLA damping
ring [17], and also the existing KEK ATF prototype
damping ring [18]. Nominal parameters for these damp-
ing rings are given in Table I. Calculation on the existing
high-luminosity factories indicates that they all operate
well below the instability threshold for the frequencies
higher than the vacuum chamber ‘‘shielding cutoff ’’ [3],
hence we will not present details in this paper. On the
other hand, for the damping rings of the future linear
colliders, the CSR induced instability could be a big
concern. Hence, in this paper, we will show how we could
avoid such CSR instability and eventually how to opti-
mize the damping ring design. To explore such a problem,
in this section, we give details on the growth rate and
threshold for typical damping rings, while leaving the
optimization to Sec. IV.

In our paper, we use the steady state CSR impedance
and assume a distributed impedance model. For a dipole,
the steady state CSR impedance is [1,2]

ZD%k& ! "iA
k1=3

R2=3
; (7)

with

A ! 3"1=3#%23&%
!!!

3
p

i" 1&: (8)

The wiggler impedance ZW%k& is computed in Ref. [14].
Hence, the total impedance is then

Z%k& ! ZD%k&
$R
C

' ZW%k&
LW

C
; (9)

where, R, $, LW , and C are the dipole bending radius, the
total bending angle, the wiggler total length, and the
damping ring circumference given in Table I, respec-
tively. To study the instability, we solve the dispersion
relation given in Eq. (6). Since we are assuming a coasting
beam model, we consider only instability wavelengths
short compared to the bunch length.

In Fig. 1, the imaginary part of " is plotted as a
function of the instability wave number for the NLC
main damping ring using the parameters listed in
Table I. At low frequencies, the dipole CSR impedance
dominates while at shorter wavelengths the wiggler CSR
impedance is usually more important. In the region where
Im%"&< 0, the beam is stable and this is true for all
regions except at the longest wavelengths as shown in
the inset. This low-frequency instability will be discussed
in the following paragraphs of this section. Similar cal-
culations were made for the TESLA ‘‘dog-bone’’ damping
ring, where the total bending angle is about $ ! 10&=3,
and the KEK ATF prototype damping ring. For the
design current in the TESLA damping ring, the CSR
impedance from the dipoles and wigglers will not drive
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Using the definition in Eq. (23), we then obtain the low-
frequency asymptotic behavior of the impedance as

Z!k" # $i2kw
k
k0

!

!E % log
"
4k
k0

#

%i
"
2

$

& "kw
k
k0

!

1$ 2 i
"

log
"
k
k0

#$

; (26)

where, !E & 0:5772 is the Euler gamma constant. This
asymptotic low-frequency impedance is plotted in Figs. 4
and 5 for comparison with the numerical solution.

Since we have an analytical expression for the short-
range G!#" in Eq. (14), we get the asymptotic high-
frequency impedance as

Z!k" # $i
6!'116 (

5
%%%%

"
p

!'43(
A
"
Kkw
!

#
2=3

k1=3

& $0:71iA
"
Kkw
!

#
2=3

k1=3; (27)

with A # 3$1=3!!2=3"!
%%%

3
p

i$ 1" & 1:63i$ 0:94 [18].
This asymptotic high-frequency impedance is plotted in
Figs. 4 and 5 for comparison with the numerical solution.

V. DISCUSSION AND CONCLUSION

In this paper, we derived the wakefield and the impe-
dance for wigglers with K2=2 ) 1 due to the synchrotron
radiation. Analytical asymptotic results are obtained for
the wakes in the limit of small and large distances and for
the impedance in the limit of small and high frequencies.
The results obtained in this paper are used for the beam
instability study due to the synchrotron radiation in wig-
glers [34].
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APPENDIX A: DETAILS FOR DERIVING EQ. (10)

In the limit of " * 1, according to Eq. (3), B+ "2. In
the numerator of the second term on the right-hand side of
Eq. (2), we would have K2B!"; ẑz"'sin" cosẑz % !1$
cos"" sinẑz( + K2"3 ) ", as long as " ) 1=K. This is
allowed, since we are interested in the limit of K ) 1.
Hence, " is neglected in the numerator. In the denomi-
nator of the second term, then K2B2 + K2"4 ) "2, as
long as " ) 1=K; hence "2 is dropped. Therefore, the
second term of Eq. (2) is on the order of 1=". According
to Eq. (4), in the limit of " * 1, we have ŝs + K2", so the
first term of Eq. (2) is on the order of 1=!K2"", and hence

is much smaller than the second term in the limit of K )
1. Therefore the first term 1=ŝs could be dropped. All these
considerations lead us to Eq. (10).

For "+ 1 and K ) 1, according to Eq. (4), we have
ŝs + K2 ) 1. Equation (3) suggests that B!"; ẑz" + 1. Now,
in Eq. (2), in the limit of K ) 1, we can neglect " in
comparison with K2 in the numerator and "2 in the
denominator of the second term on the right-hand side.
We then note that the second term is on the order of 1 and
is much larger than the first term 1=ŝs + K$2 * 1; hence
we can drop 1=ŝs to obtain Eq. (10).

Now let us study the limit of " ) 1. Equation (3)
suggests that B!"; ẑz" + ". For K ) 1, then in Eq. (2),
" and "2 could be dropped in the numerator and denom-
inator of the second term on the right-hand side, respec-
tively. The second term is on the order of 1=". Now,
according to Eq. (4), in the limit of " ) 1, we have ŝs +
K2". Hence, in the limit of K ) 1, the first term of
Eq. (2), which is on the order of 1=!K2"", is negligible,
compared with the second term. Hence, we obtained
Eq. (10).

So, in general, for large K, as long as " is not too small,
i.e., " ) 1=K, the simplification leading to Eq. (10) is
always acceptable.

APPENDIX B: SINGULAR POINTS IN D!! ; ẑz"
To find the scaling of the singularity, we assume that at

the vicinity of the zeros ẑzs of B!"; ẑz", the leading term
scales as

B & b!ẑz $ ẑzs"$; (B1)

then we have

B0 & $b!ẑz $ ẑzs"$$1; (B2)

where the prime indicates the derivative with respect to ẑz.
Let us first calculate B0. From Eq. (3) we have

B0 #$ sinẑz % sin!ẑz $ "" % cos!ẑz $ """
$ cos!ẑz $ """"0: (B3)

To find "0, we revert to Eq. (9), where we find

"0 # C!"; ẑz"
B2!"; ẑz" (B4)

with

C!"; ẑz"#2sin!2ẑz$""sin
"
"

2

#

"
!

2sin
"
"

2

#

$cos
"
"

2

#

"
$

:

(B5)

Note that C!"; ẑz" is a well-defined function at the zeros of
B!"; ẑz".

Combining Eqs. (B1) and (B3)–(B5), we have, near the
zeros ẑzs,
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Using the definition in Eq. (23), we then obtain the low-
frequency asymptotic behavior of the impedance as
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where, !E & 0:5772 is the Euler gamma constant. This
asymptotic low-frequency impedance is plotted in Figs. 4
and 5 for comparison with the numerical solution.

Since we have an analytical expression for the short-
range G!#" in Eq. (14), we get the asymptotic high-
frequency impedance as

Z!k" # $i
6!'116 (

5
%%%%

"
p
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"
Kkw
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& $0:71iA
"
Kkw
!
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2=3

k1=3; (27)

with A # 3$1=3!!2=3"!
%%%

3
p

i$ 1" & 1:63i$ 0:94 [18].
This asymptotic high-frequency impedance is plotted in
Figs. 4 and 5 for comparison with the numerical solution.

V. DISCUSSION AND CONCLUSION

In this paper, we derived the wakefield and the impe-
dance for wigglers with K2=2 ) 1 due to the synchrotron
radiation. Analytical asymptotic results are obtained for
the wakes in the limit of small and large distances and for
the impedance in the limit of small and high frequencies.
The results obtained in this paper are used for the beam
instability study due to the synchrotron radiation in wig-
glers [34].
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APPENDIX A: DETAILS FOR DERIVING EQ. (10)

In the limit of " * 1, according to Eq. (3), B+ "2. In
the numerator of the second term on the right-hand side of
Eq. (2), we would have K2B!"; ẑz"'sin" cosẑz % !1$
cos"" sinẑz( + K2"3 ) ", as long as " ) 1=K. This is
allowed, since we are interested in the limit of K ) 1.
Hence, " is neglected in the numerator. In the denomi-
nator of the second term, then K2B2 + K2"4 ) "2, as
long as " ) 1=K; hence "2 is dropped. Therefore, the
second term of Eq. (2) is on the order of 1=". According
to Eq. (4), in the limit of " * 1, we have ŝs + K2", so the
first term of Eq. (2) is on the order of 1=!K2"", and hence

is much smaller than the second term in the limit of K )
1. Therefore the first term 1=ŝs could be dropped. All these
considerations lead us to Eq. (10).

For "+ 1 and K ) 1, according to Eq. (4), we have
ŝs + K2 ) 1. Equation (3) suggests that B!"; ẑz" + 1. Now,
in Eq. (2), in the limit of K ) 1, we can neglect " in
comparison with K2 in the numerator and "2 in the
denominator of the second term on the right-hand side.
We then note that the second term is on the order of 1 and
is much larger than the first term 1=ŝs + K$2 * 1; hence
we can drop 1=ŝs to obtain Eq. (10).

Now let us study the limit of " ) 1. Equation (3)
suggests that B!"; ẑz" + ". For K ) 1, then in Eq. (2),
" and "2 could be dropped in the numerator and denom-
inator of the second term on the right-hand side, respec-
tively. The second term is on the order of 1=". Now,
according to Eq. (4), in the limit of " ) 1, we have ŝs +
K2". Hence, in the limit of K ) 1, the first term of
Eq. (2), which is on the order of 1=!K2"", is negligible,
compared with the second term. Hence, we obtained
Eq. (10).

So, in general, for large K, as long as " is not too small,
i.e., " ) 1=K, the simplification leading to Eq. (10) is
always acceptable.

APPENDIX B: SINGULAR POINTS IN D!! ; ẑz"
To find the scaling of the singularity, we assume that at

the vicinity of the zeros ẑzs of B!"; ẑz", the leading term
scales as

B & b!ẑz $ ẑzs"$; (B1)

then we have

B0 & $b!ẑz $ ẑzs"$$1; (B2)

where the prime indicates the derivative with respect to ẑz.
Let us first calculate B0. From Eq. (3) we have

B0 #$ sinẑz % sin!ẑz $ "" % cos!ẑz $ """
$ cos!ẑz $ """"0: (B3)

To find "0, we revert to Eq. (9), where we find

"0 # C!"; ẑz"
B2!"; ẑz" (B4)

with

C!"; ẑz"#2sin!2ẑz$""sin
"
"

2

#

"
!

2sin
"
"

2

#

$cos
"
"

2

#

"
$

:

(B5)

Note that C!"; ẑz" is a well-defined function at the zeros of
B!"; ẑz".

Combining Eqs. (B1) and (B3)–(B5), we have, near the
zeros ẑzs,
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where, the slippage factor is defined as

! ! "" 1

#2 ; (2)

with " equal to the momentum compaction factor and #
is the Lorentz factor. For ultrarelativistic beams, we have
! # ". Based on our definition of s, the sign convention
for " is then the following. If a particle with a higher
energy than the nominal energy, i.e., $ > 0, would go to
the head of the bunch, then the beam line provides a
negative ". According to this convention, then in a simple
bending magnet, we will have " > 0, while in a wiggler,
we have "< 0. In Eq. (1), r0 # 2:82$ 10"15 m is the
electron classical radius, and w%s& is the wake Green
function describing the interaction of two particles due
to the synchrotron radiation. The wake Green function
w%s& ! 0 for s > 0 while w%s& ! 0 for s < 0. The positive
values of w%s& correspond to the energy loss and the
negative values imply the energy gain.

The distribution function % is written as a sum of the
equilibrium distribution function and a perturbation, % !
%0%$& ' %1%$; s; z&, with %1 ( %0. We look for a pertur-
bation as

%1 ! %̂%1e"i!z=c'iks; (3)

where k is the wave number and ! the frequency.
Linearizing the 1D Vlasov Eq. (1) leads to the dispersion
relation [9]:

1 ! ir0cZ%k&
#

Z 1

"1
d$

d%0=d$
!' ck!$

; (4)

which determines the existence of a solution as in Eq. (3).
Here,

Z%k& !
Z 1

0
dsw%s&e"iks (5)

is the CSR impedance.
We assume that the initial energy distribution function

is a Gaussian, i.e., %0 ! n0=%
!!!!!!!

2&
p

$0& exp%"$2=2$2
0&,

where n0 is the peak linear density, i.e., the number of
particles per unit length. In this case, Eq. (4) can be
rewritten as

1 ! " iZ%k&!
!!!!!!!

2&
p

k

Z 1

"1
dp

pe"p2=2

") p
; (6)

where ! ! n0r0=%j!j#$2
0&, " ! !=%ckj!j$0&, and p !

$=$0. The upper (lower) sign in Eq. (6) refers to the
case of a positive (negative) !.

III. STORAGE RINGS WITH WIGGLERS

As mentioned, a number of storage rings utilize long
damping wigglers where a significant fraction of the
energy loss per turn is emitted. To study the impact of
the CSR impedance from wiggler on the beam instability,

we study the existing high-luminosity factories [10–13].
Furthermore, we study the damping rings being designed
for the future linear colliders. These damping rings are
the NLC main damping ring [16], the TESLA damping
ring [17], and also the existing KEK ATF prototype
damping ring [18]. Nominal parameters for these damp-
ing rings are given in Table I. Calculation on the existing
high-luminosity factories indicates that they all operate
well below the instability threshold for the frequencies
higher than the vacuum chamber ‘‘shielding cutoff ’’ [3],
hence we will not present details in this paper. On the
other hand, for the damping rings of the future linear
colliders, the CSR induced instability could be a big
concern. Hence, in this paper, we will show how we could
avoid such CSR instability and eventually how to opti-
mize the damping ring design. To explore such a problem,
in this section, we give details on the growth rate and
threshold for typical damping rings, while leaving the
optimization to Sec. IV.

In our paper, we use the steady state CSR impedance
and assume a distributed impedance model. For a dipole,
the steady state CSR impedance is [1,2]

ZD%k& ! "iA
k1=3

R2=3
; (7)

with

A ! 3"1=3#%23&%
!!!

3
p

i" 1&: (8)

The wiggler impedance ZW%k& is computed in Ref. [14].
Hence, the total impedance is then

Z%k& ! ZD%k&
$R
C

' ZW%k&
LW

C
; (9)

where, R, $, LW , and C are the dipole bending radius, the
total bending angle, the wiggler total length, and the
damping ring circumference given in Table I, respec-
tively. To study the instability, we solve the dispersion
relation given in Eq. (6). Since we are assuming a coasting
beam model, we consider only instability wavelengths
short compared to the bunch length.

In Fig. 1, the imaginary part of " is plotted as a
function of the instability wave number for the NLC
main damping ring using the parameters listed in
Table I. At low frequencies, the dipole CSR impedance
dominates while at shorter wavelengths the wiggler CSR
impedance is usually more important. In the region where
Im%"&< 0, the beam is stable and this is true for all
regions except at the longest wavelengths as shown in
the inset. This low-frequency instability will be discussed
in the following paragraphs of this section. Similar cal-
culations were made for the TESLA ‘‘dog-bone’’ damping
ring, where the total bending angle is about $ ! 10&=3,
and the KEK ATF prototype damping ring. For the
design current in the TESLA damping ring, the CSR
impedance from the dipoles and wigglers will not drive
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where, the slippage factor is defined as

! ! "" 1

#2 ; (2)

with " equal to the momentum compaction factor and #
is the Lorentz factor. For ultrarelativistic beams, we have
! # ". Based on our definition of s, the sign convention
for " is then the following. If a particle with a higher
energy than the nominal energy, i.e., $ > 0, would go to
the head of the bunch, then the beam line provides a
negative ". According to this convention, then in a simple
bending magnet, we will have " > 0, while in a wiggler,
we have "< 0. In Eq. (1), r0 # 2:82$ 10"15 m is the
electron classical radius, and w%s& is the wake Green
function describing the interaction of two particles due
to the synchrotron radiation. The wake Green function
w%s& ! 0 for s > 0 while w%s& ! 0 for s < 0. The positive
values of w%s& correspond to the energy loss and the
negative values imply the energy gain.

The distribution function % is written as a sum of the
equilibrium distribution function and a perturbation, % !
%0%$& ' %1%$; s; z&, with %1 ( %0. We look for a pertur-
bation as

%1 ! %̂%1e"i!z=c'iks; (3)

where k is the wave number and ! the frequency.
Linearizing the 1D Vlasov Eq. (1) leads to the dispersion
relation [9]:

1 ! ir0cZ%k&
#

Z 1

"1
d$

d%0=d$
!' ck!$

; (4)

which determines the existence of a solution as in Eq. (3).
Here,

Z%k& !
Z 1

0
dsw%s&e"iks (5)

is the CSR impedance.
We assume that the initial energy distribution function

is a Gaussian, i.e., %0 ! n0=%
!!!!!!!

2&
p

$0& exp%"$2=2$2
0&,

where n0 is the peak linear density, i.e., the number of
particles per unit length. In this case, Eq. (4) can be
rewritten as

1 ! " iZ%k&!
!!!!!!!

2&
p

k

Z 1

"1
dp

pe"p2=2

") p
; (6)

where ! ! n0r0=%j!j#$2
0&, " ! !=%ckj!j$0&, and p !

$=$0. The upper (lower) sign in Eq. (6) refers to the
case of a positive (negative) !.

III. STORAGE RINGS WITH WIGGLERS

As mentioned, a number of storage rings utilize long
damping wigglers where a significant fraction of the
energy loss per turn is emitted. To study the impact of
the CSR impedance from wiggler on the beam instability,

we study the existing high-luminosity factories [10–13].
Furthermore, we study the damping rings being designed
for the future linear colliders. These damping rings are
the NLC main damping ring [16], the TESLA damping
ring [17], and also the existing KEK ATF prototype
damping ring [18]. Nominal parameters for these damp-
ing rings are given in Table I. Calculation on the existing
high-luminosity factories indicates that they all operate
well below the instability threshold for the frequencies
higher than the vacuum chamber ‘‘shielding cutoff ’’ [3],
hence we will not present details in this paper. On the
other hand, for the damping rings of the future linear
colliders, the CSR induced instability could be a big
concern. Hence, in this paper, we will show how we could
avoid such CSR instability and eventually how to opti-
mize the damping ring design. To explore such a problem,
in this section, we give details on the growth rate and
threshold for typical damping rings, while leaving the
optimization to Sec. IV.

In our paper, we use the steady state CSR impedance
and assume a distributed impedance model. For a dipole,
the steady state CSR impedance is [1,2]

ZD%k& ! "iA
k1=3

R2=3
; (7)

with

A ! 3"1=3#%23&%
!!!

3
p

i" 1&: (8)

The wiggler impedance ZW%k& is computed in Ref. [14].
Hence, the total impedance is then

Z%k& ! ZD%k&
$R
C

' ZW%k&
LW

C
; (9)

where, R, $, LW , and C are the dipole bending radius, the
total bending angle, the wiggler total length, and the
damping ring circumference given in Table I, respec-
tively. To study the instability, we solve the dispersion
relation given in Eq. (6). Since we are assuming a coasting
beam model, we consider only instability wavelengths
short compared to the bunch length.

In Fig. 1, the imaginary part of " is plotted as a
function of the instability wave number for the NLC
main damping ring using the parameters listed in
Table I. At low frequencies, the dipole CSR impedance
dominates while at shorter wavelengths the wiggler CSR
impedance is usually more important. In the region where
Im%"&< 0, the beam is stable and this is true for all
regions except at the longest wavelengths as shown in
the inset. This low-frequency instability will be discussed
in the following paragraphs of this section. Similar cal-
culations were made for the TESLA ‘‘dog-bone’’ damping
ring, where the total bending angle is about $ ! 10&=3,
and the KEK ATF prototype damping ring. For the
design current in the TESLA damping ring, the CSR
impedance from the dipoles and wigglers will not drive
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with	
  

B0!!; ẑz" # "

b2!ẑz $ ẑzs"2!
; (B6)

where

" # $ cos!ẑz $!"!% C!!; ẑz"jẑz#ẑzs;!#!!" ;ẑzs"

# $ cos!ẑz $!"!
!

2 sin!2ẑz $ !" sin
"
!

2

#

!
$

2 sin
"
!

2

#

$ cos
"
!

2

#

!
%&'
'
'
'
'
'
'ẑz#ẑzs;!#!!" ;ẑzs"

: (B7)

Here, ẑzs is defined as the solution of B!!!" ; ẑzs"; ẑzs" # 0.
Therefore, combining Eqs. (B2) and (B6), we find the
scaling index ! # 1=3 and b # !3""1=3. This means that
D!" ; ẑz" has only an integrable singularity at ẑz # ẑzs with
D / !ẑz $ ẑzs"$1=3.

As a numeric illustration of the origin of the singular-
ity, we plot in Fig. 6 functions B#!!" ; ẑz"; ẑz$ and !!" ; ẑz" for
" # 1:0.

This plot shows that at the point where B # 0, both
derivatives B0 and !0 are infinite, in accordance with
Eqs. (B2) and (B4).

APPENDIX C: SIMPLE PHYSICS MODEL

Here, we give some explanation about the peaks and the
zeros in Fig. 1 based on a simple physics model.

The CSR wake is actually the field emitted by a trailing
particle which acts on the particle in front. Using a model
presented in Ref. [8], the longitudinal force on the leading
particle can be thought of as the component of the trans-
verse Coulomb field of a line charge projected onto the
leading particle’s direction of motion:

Wk!s; z" # eE?!s; z" sin#; (C1)

where E?!s; z" & 2Ne$!s; z"=r!s; z" is the magnitude of
the transverse Coulomb electric field at the retarded posi-
tion from the line charge at a retarded time. Here, Ne is
the total bunch charge, and $ is the function of linear

density normalized to 1. The line charge is in the direc-
tion of the motion of the trailing particle at the retarded
time, and r is the distance of the front particle to the line
charge. The argument z indicates that the amplitude of
the transverse electric field is actually varying along the
trajectory. In Eq. (C1), # is the angle between the direc-
tion of motion at the retarded time of the trailing particle
and that of the particle at the front at the test time. To
illustrate the model, we give a schematic plot in Fig. 7. In
Eq. (26) of Ref. [8], it was proven that, for a uniform
bunch, the energy loss gradient along the bunch is given
exactly by Eq. (C1), i.e., dE!s; z"=!cdt" # Wk!s; z". It was
proven in Eq. (17) of Ref. [30] that dE!s; z"=!cdt" #
e2kw$D!ŝs; K; ẑz". Now, according to Eq. (6), one then
finds, G!s" / hWk!s; z"i ' (

R$w
0 Wk!s; z"dz)=$w.

To understand the wiggler wakefield, let us look at the
four electrons in Fig. 8. The pair with solid arrows is
separated by an integer number times of the wiggler
fundamental radiation wavelength. During their journey,
when the light emitted by the trailing electron catches the
electron in front, the instantaneous direction of motion of
the front electron is always parallel to the direction of
motion of the trailing electron at the retarded time when it
emitted the light. Hence we have # # 0. So according to
Eq. (C1), the longitudinal force is always zero. It is worth
noting that, at particular locations, e.g., the location in
Fig. 8, the distance r # 0, which is a singular point of E?.
However, since we averaged over one period, this r # 0
point contributes only a zero measure, but # # 0 for the
entire period, hence Wk # 0. This explains the zeros in
the longitudinal wake potential G!s" plotted in Fig. 1.

0 1 2 3
Z
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−2

0

2

4

6
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^

FIG. 6. A concrete example for " # 1:0. Solid line: B!!!" #
1:0; ẑz"; ẑz" as a function of ẑz; dashed line: !!" # 1:0; ẑz" as a
function of ẑz.
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1-2003
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r

FIG. 7. Physics model to explain the longitudinal CSR wake.
The two ellipses stand for a pair of electrons satisfying the
retarded condition, i.e., the trailing electron is shown at the
retarded time and the front electron at the test time.
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ŝs ! !

2

!

1" K2

2

"

" K2

4!
f#2$1% cos!& % ! sin!'

( $cos! cos2ẑz " sin! sin2ẑz&
% 2$1% cos!&g: (4)

In the above equations, we use the following dimension-
less variables: ŝs ! !2kws and ẑz ! kwz. The parameter !
is equal to kw$z% zr&, where z and zr are the projected
coordinates on the wiggler axis of the current position of
the test particle and the retarded position of the source
particle, respectively. The internal coordinate s is defined
so that the bunch head corresponds to a larger value of s
than the tail. The wiggler parameter K is approximately
K ) 93:4Bw"w, with Bw the peak magnetic field of the
wiggler in units of Tesla and "w the period in meters. In
addition, ! is the Lorentz factor, e is the electron charge,
c is the speed of light in vacuum, and kw ! 2#="w is the
wiggler wave number. Note that the function D is a
periodic function of ẑz with a period equal to #. Also
note that, despite assuming K * 1, we still assume a
small-angle orbit approximation, i.e., K=! + 1.

We introduce the longitudinal wake W$s& of the bunch
as the rate of the energy change averaged over the z
coordinate:

W$s& ! % 1

e2
d "EE
cdt

! %kw
Z s

%1
ds0G$s% s0& d"$s

0&
ds0

; (5)

where
G$s& ! 1

#

Z #

0
dẑzD$ŝs; K; ẑz&; (6)

and we dropped K from the list of arguments of the
function G. The positive values of W correspond to the
energy loss and the negative values imply the energy gain.
The usual longitudinal wake w$s& corresponding to the
interaction of two particles is then defined as

w$s& ! %kw
dG$s&
ds

; (7)

so that

W$s& !
Z s

%1
ds0w$s% s0&"$s0&: (8)

Note that the wake Eq. (7) is localized in front of the
particle and vanishes behind it; w ! 0 for s < 0.

In the limit of large K, we can neglect unity in the first
bracket of Eq. (4), assuming that K2=2 * 1. Such an

approximation is valid, if we are not interested in the
very short distances of order of $Kkw!2&%1 (0:5 #A for the
NLC damping ring wiggler [28]).We also introduce a new
variable $ , ŝs=K2 which eliminates the parameter K
from Eq. (4):

$$!; ẑz& ! !

4
" 1

4!
f#2$1% cos!& % ! sin!'

( $cos! cos2ẑz " sin! sin2ẑz&
% 2$1% cos!&g: (9)

In this limit, the expression for D, Eq. (2), can also be
simplified:

D$$ ; ẑz& ! 2
sin! cosẑz " $1% cos!& sinẑz

B$!; ẑz& ; (10)

as long as ! is not too small, ! * 1=K. Again, the
parameter K is eliminated from this equation. A detailed
analysis supporting this approximation can be found in
Appendix A.

III. WAKEFIELD

Using Eqs. (6) and (10) we find

G$$& ! 2

#

Z #

0
dẑz

sin! cosẑz " $1% cos!& sinẑz
B$!; ẑz& ; (11)

where ! ! !$$ ; ẑz& is implicitly determined by Eq. (9).
The integrand in this equation has singularities at
points ẑz ! ẑzs where B!!$$ ; ẑzs&; ẑzs" ! 0. It is shown in
Appendix B that in the vicinity of a singular point
B!!$$ ; ẑz&" / $ẑz % ẑzs&1=3, and the singularity is integrable.

We plot in Fig. 1 the function G$$& calculated by
numerical integration. A characteristic feature of the
function G is the presence of cusp points, at which the
function reaches local maxima and minima.

An approximate location of these cusp points and
the value of the function G at these points can be under-
stood with a simple physical argument presented in
Appendix C. It turns out that the minima are located at
distances s between the particles equal to the integer
number of the fundamental radiation wavelength in the
wiggler, and the maxima approximately correspond to the
distance equal to an odd number of half-wavelengths. A
simple analytical calculation in Appendix C gives the
following results:

G$$& !
(

0; for $ ! n#
2 with n ! 1; 2; . . . ;

% 4$2n"1&#
4"#$2n"1&#'2 ; for $ ) $2n"1&#

4 % 1
$2n"1&# with n ! 0; 1; . . . : (12)

These are the ‘‘(’’ points in Fig. 1, showing very good
agreement with the numerical result.

A. Short-range limit

In the limit $ + 1, it follows from Eq. (9) that ! + 1
as well. Equation (9) can then be solved using a Taylor
expansion of the right-hand side:

! !
!
24$
cos2ẑz

"
1=3

: (13)

Expanding the integrand in Eq. (11), keeping only the
first nonvanishing term in ! and substituting ! from
Eq. (13) yields
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G!!" # $ 1

"
2

!3 !"1=3
Z "

0
dẑz cos2=3ẑz # $ 4 32=3!!116 "

5
!!!!

"
p

!!43"
!$1=3

% $0:99!$1=3:

(14)

The above result can also be obtained if one considers a
wiggler as a sequence of bending magnets with the bend-
ing radius R # #=kwKj cosẑzj. Indeed, in a bending
dipole, the corresponding Gbend!s" # $2s$1=3=!3R2"1=3
[7,8]. Averaging Gbend over the wiggler period yields
Eq. (14). The reason why such a model gives the correct
result in this limit is that the formation length of the
radiation is much shorter than the wiggler period, and
one can use a local approximation of the bending magnet
for the wake.

B. Long-range limit

In the limit ! & 1, the parameter " is also large, and
Eq. (9) can be further simplified:

! # "

4
$ sin" cos!"$ 2ẑz"

4
: (15)

In Eq. (3), we keep only the largest term

B!"; ẑz" # $" sin!"$ ẑz": (16)

For D, one now finds

D!! ; ẑz" ' F!! ; ẑz"
!

; (17)
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F!! ; ẑz" ' sinẑz
2 sin!ẑz $ "!! ; ẑz""$

1

2
; (18)

where the function "!! ; ẑz" is implicitly determined by
Eq. (15). Averaging over one wiggler period, we find
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# 1
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sin!ẑz $""
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It is easy to check that the function #FF is periodic,
#FF!! ( "=2" # #FF!!", and #FF!0" # 0, #FF!"=4" # $1 in
agreement with Eq. (12). The average value #FF!!" is equal
to $1=2. Since #FF is periodic in ! with a period of "=2,
using Eq. (20), we get a Fourier series representation for
#FF!!":
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2n( 1

2
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where Jn!x" is the Bessel function of the first kind. Derivations of the Fourier coefficients are presented in Appendix D.
In Fig. 2, we plot the function #FF!!" defined in Eq. (21) for one period.

The corresponding long-range wake is then
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It is worth noting that the asymptotic expression in the
limit ! & 1 in Ref. [30] is incorrect; instead of the #FF
function the authors obtained a sine function, which
corresponds only to the fundamental mode of the radia-
tion and neglects contributions from higher-order har-
monics.

The longitudinal wake defined in Eq. (7) is plotted in
Fig. 3.

IV. IMPEDANCE
The impedance Z!k" is defined as the Fourier transform

of the wake,
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Z 1

0
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(23)
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FIG. 1. The solid curve represents the G!!" defined in Eq. (11)
as a function of the normalized coordinate 2!=". The ())
signs are the approximation given in Eq. (12).
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The above result can also be obtained if one considers a
wiggler as a sequence of bending magnets with the bend-
ing radius R # #=kwKj cosẑzj. Indeed, in a bending
dipole, the corresponding Gbend!s" # $2s$1=3=!3R2"1=3
[7,8]. Averaging Gbend over the wiggler period yields
Eq. (14). The reason why such a model gives the correct
result in this limit is that the formation length of the
radiation is much shorter than the wiggler period, and
one can use a local approximation of the bending magnet
for the wake.

B. Long-range limit

In the limit ! & 1, the parameter " is also large, and
Eq. (9) can be further simplified:
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In Eq. (3), we keep only the largest term
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where the function "!! ; ẑz" is implicitly determined by
Eq. (15). Averaging over one wiggler period, we find
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It is easy to check that the function #FF is periodic,
#FF!! ( "=2" # #FF!!", and #FF!0" # 0, #FF!"=4" # $1 in
agreement with Eq. (12). The average value #FF!!" is equal
to $1=2. Since #FF is periodic in ! with a period of "=2,
using Eq. (20), we get a Fourier series representation for
#FF!!":
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where Jn!x" is the Bessel function of the first kind. Derivations of the Fourier coefficients are presented in Appendix D.
In Fig. 2, we plot the function #FF!!" defined in Eq. (21) for one period.

The corresponding long-range wake is then
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It is worth noting that the asymptotic expression in the
limit ! & 1 in Ref. [30] is incorrect; instead of the #FF
function the authors obtained a sine function, which
corresponds only to the fundamental mode of the radia-
tion and neglects contributions from higher-order har-
monics.

The longitudinal wake defined in Eq. (7) is plotted in
Fig. 3.
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as a function of the normalized coordinate 2!=". The ())
signs are the approximation given in Eq. (12).
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The pair with dashed arrows is separated by an odd
integer number times of half of the wiggler fundamental
radiation wavelength. Averaged over one period, they
make the largest angle between the instantaneous direc-
tion of motion of the front electron and the direction of
motion of the trailing electron at the retarded time. One
could check that, even though ! is changing sign during
one period, E? is also changing direction. Therefore,
Wk ! eE? sin! is always pointing forward along the
direction of motion of the front electron. Hence, accord-
ing to Eq. (C1), Wk reaches a maximum, and G"s# also
reaches a maximum. This explains the peaks shown in
Fig. 1.

Let us calculate the values at these cusp points.
According to Eq. (9), when ! ! 2n", we have # !
n"=2. According to Eq. (11), the numerator of the inte-

grand is zero at ! ! 2n", while B"!; ẑz# ! 2n" sinẑz ac-
cording to Eq. (3). Hence the integral is zero. So we have
G"n"=2# ! 0 for n ! 1; 2; . . . ; . We find that it is true in
the numerical solution in Fig. 1.

At ! ! "2n$ 1#", according to Eqs. (3) and (11), we
get

G"## ! 2

"

Z "

0
dẑz

2 sinẑz
2 cosẑz % "2n$ 1#" sinẑz

! % 4"2 n$ 1#"
4$ &"2 n$ 1#"'2

for ! ! "2n$ 1#": (C2)

According to Eq. (9), we have

# ! !

4
% 2

!
cos2ẑz ( !

4
% 1

!
for ! ! "2n$ 1#": (C3)

In the above approximation, we average # over one
period in ẑz. This becomes a good approximation,
when ! is large. This manifests itself in Fig. 1. As
we find from Fig. 1, with the increasing of # , therefore,
the increasing of !, the above approximate value
gets closer and closer to the numerical solution.
Combining the results at the zeros and the peaks, we get
Eq. (12).

APPENDIX D: CALCULATION FOR THE
FOURIER COEFFICIENTS

Since we find that the function "FF"## is periodic in #
with a period of "=2, we could represent it in a Fourier
series. The calculation for the Fourier coefficients are
straightforward. We here illustrate one example. For m !
1; 2; . . . ,

h "FF"##cos&4"2m$1##'i) 4

"

Z ""=2#

0
d# "FF"##cos&4"2m$1##'

! 2

"2

Z ""=2#

0
d# cos&4"2m$1##'

Z "

0
dẑz

sinẑz
sin"ẑz%!#

! 1

"2

Z 2"

0
d!

Z "

0
dẑz sinẑz sin"ẑz%!#cos

!

"2m$1#!%"2m$1#sin&2"!% ẑz#'
2

%"2m$1#sin2ẑz
2

"

:

(D1)

Notice that, we have used the definition of "FF in Eq. (20).
We also changed integral variable pair "# ; ẑz# to "!; ẑz#,
using the Jacobian obtained from Eq. (15). To complete
the integral in Eq. (D1), we make use of the well-known
identities

cos"z cos!# !
X1

n!0

$2n"%#nJ2n"z# cos2n!; (D2)

with, $0 ! 1, $n ! 2 for n ! 1; 2; . . . , and

sin"z cos!# ! 2
X1

n!0

"%#nJ2n$1"z# cos"2n$ 1#!: (D3)

All the other Fourier coefficients, including the average
value h "FF"##i ! %1=2, are obtained in the same manner.
We then obtain the Fourier series representation in
Eq. (21).

APPENDIX E: REAL PART OF THE IMPEDANCE
AND THE WIGGLER RADIATION SPECTRUM

Our approach to calculate I"!# is based on the paper of
Alferov et al. [32] and that of Krinsky et al. [33]. The only
difference is that we are dealing with the large K case;
hence we could eliminate K from the equations as was
done for the impedance. Let us illustrate this in the
following. The energy radiated per electron per unit solid

1-2003
8663A2

FIG. 8. Physics model to explain the peaks and zeros of G"s#
shown in Fig. 1. The solid line stands for the electron trajectory.
The ellipses stand for the electrons. The arrows stand for the
instantaneous direction of the motion. We group the four
electrons into two pairs, one with solid arrows and the other
with dashed arrows. Again, the trailing electron in each pair
satisfying the retarded condition is shown at the retarded time,
and the front electron at the test time.
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The above result can also be obtained if one considers a
wiggler as a sequence of bending magnets with the bend-
ing radius R # #=kwKj cosẑzj. Indeed, in a bending
dipole, the corresponding Gbend!s" # $2s$1=3=!3R2"1=3
[7,8]. Averaging Gbend over the wiggler period yields
Eq. (14). The reason why such a model gives the correct
result in this limit is that the formation length of the
radiation is much shorter than the wiggler period, and
one can use a local approximation of the bending magnet
for the wake.

B. Long-range limit

In the limit ! & 1, the parameter " is also large, and
Eq. (9) can be further simplified:

! # "

4
$ sin" cos!"$ 2ẑz"

4
: (15)

In Eq. (3), we keep only the largest term

B!"; ẑz" # $" sin!"$ ẑz": (16)

For D, one now finds

D!! ; ẑz" ' F!! ; ẑz"
!

; (17)

with

F!! ; ẑz" ' sinẑz
2 sin!ẑz $ "!! ; ẑz""$

1

2
; (18)

where the function "!! ; ẑz" is implicitly determined by
Eq. (15). Averaging over one wiggler period, we find

G!!" '
#FF!!"
!

; (19)

with

#FF!!" ' 1

"

Z "

0
dẑzF!! ; ẑz"

# 1

2"

"

$"(
Z "

0
dẑz

sinẑz
sin!ẑz $""

#

: (20)

It is easy to check that the function #FF is periodic,
#FF!! ( "=2" # #FF!!", and #FF!0" # 0, #FF!"=4" # $1 in
agreement with Eq. (12). The average value #FF!!" is equal
to $1=2. Since #FF is periodic in ! with a period of "=2,
using Eq. (20), we get a Fourier series representation for
#FF!!":

#FF!!" # $ 1

2
( 1

2

X1

n#0

$

Jn

"
2n( 1

2

#

$Jn(1

"
2n( 1

2

#%
2
cos!4!2n( 1"!"; (21)

where Jn!x" is the Bessel function of the first kind. Derivations of the Fourier coefficients are presented in Appendix D.
In Fig. 2, we plot the function #FF!!" defined in Eq. (21) for one period.

The corresponding long-range wake is then

G!!" # $ 1
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Jn
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2
cos!4!2n( 1"!": (22)

It is worth noting that the asymptotic expression in the
limit ! & 1 in Ref. [30] is incorrect; instead of the #FF
function the authors obtained a sine function, which
corresponds only to the fundamental mode of the radia-
tion and neglects contributions from higher-order har-
monics.

The longitudinal wake defined in Eq. (7) is plotted in
Fig. 3.

IV. IMPEDANCE
The impedance Z!k" is defined as the Fourier transform

of the wake,
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FIG. 1. The solid curve represents the G!!" defined in Eq. (11)
as a function of the normalized coordinate 2!=". The ())
signs are the approximation given in Eq. (12).
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where k0 ! 4!2kw=K2 is the wiggler fundamental radia-
tion wave number.

We evaluated the integral in Eq. (23) using numerically
calculated values of the function G""# in the interval
$"min; "max%, where "min & 10'3 and "max & 50. The
contribution to the integral outside of this interval
was calculated using asymptotic representations
Eqs. (14) and (22).

The resulting imaginary and real parts of the impe-
dance are shown in Figs. 4 and 5, respectively.

The real part of the impedance can be related to the
wiggler radiation spectrum I"!# [31]:

ReZ"!# ( #
e2

I"!#: (24)

The spectrum I"!# in the limit K ) 1 is calculated in

Appendix E. It shows a perfect agreement with the result
presented in Fig. 5.

Simple analytical formulas for the impedance can be
obtained in the limit of low and high frequencies.

The low-frequency impedance corresponds to the first
term in Eq. (22) for function G which does not oscillate
with " :

G""# ( ' 1

2"
: (25)
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FIG. 3. The normalized wake Green function
'w"s#$K="!kw#%2 as a function of the normalized coordinate
2"=#.
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FIG. 4. The imaginary part of the normalized impedance
Z"k#=kw as a function of the normalized wave number k=k0.
Solid line: numerical solution from Eq. (23); dotted line:
analytical low-frequency asymptotic behavior from Eq. (26);
and dashed line: analytical high-frequency asymptotic behav-
ior from Eq. (27).
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FIG. 2. Plot of !FF""# of Eq. (21).
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FIG. 5. The real part of the normalized impedance Z"k#=kw
as a function of the normalized wave number k=k0. Solid line:
numerical solution from Eq. (23); dotted line: analytical low-
frequency asymptotic behavior from Eq. (26); and dashed line:
analytical high-frequency asymptotic behavior from Eq. (27).
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where k0 ! 4!2kw=K2 is the wiggler fundamental radia-
tion wave number.

We evaluated the integral in Eq. (23) using numerically
calculated values of the function G""# in the interval
$"min; "max%, where "min & 10'3 and "max & 50. The
contribution to the integral outside of this interval
was calculated using asymptotic representations
Eqs. (14) and (22).

The resulting imaginary and real parts of the impe-
dance are shown in Figs. 4 and 5, respectively.

The real part of the impedance can be related to the
wiggler radiation spectrum I"!# [31]:

ReZ"!# ( #
e2

I"!#: (24)

The spectrum I"!# in the limit K ) 1 is calculated in

Appendix E. It shows a perfect agreement with the result
presented in Fig. 5.

Simple analytical formulas for the impedance can be
obtained in the limit of low and high frequencies.

The low-frequency impedance corresponds to the first
term in Eq. (22) for function G which does not oscillate
with " :
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FIG. 4. The imaginary part of the normalized impedance
Z"k#=kw as a function of the normalized wave number k=k0.
Solid line: numerical solution from Eq. (23); dotted line:
analytical low-frequency asymptotic behavior from Eq. (26);
and dashed line: analytical high-frequency asymptotic behav-
ior from Eq. (27).
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FIG. 5. The real part of the normalized impedance Z"k#=kw
as a function of the normalized wave number k=k0. Solid line:
numerical solution from Eq. (23); dotted line: analytical low-
frequency asymptotic behavior from Eq. (26); and dashed line:
analytical high-frequency asymptotic behavior from Eq. (27).
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r1 ! r̂1e2ivs!c1ikz , (4)
where k is the wave number of the perturbation, we find

"v 1 ckhd#r̂1 ! i
r0c
g

≠r0

≠d
Z"k#

Z

dd r̂1"d# , (5)

where

Z"k# !
Z `

0
dz W"z #e2ikz

!
2ik1!3

31!3R2!3

Z `

0
dj j21!3e2ij ! 2iA

k1!3

R2!3 .

(6)

The complex factor A is

A ! 321!3G

µ

2
3

∂

"
p

3 i 2 1# ! 1.63i 2 0.94 , (7)

where G is the complete gamma function.
The nontrivial solution of Eq. (5)

r̂1 !
icr0Z"k#

g"v 1 ckhd#
dr0

dd
n̂1 (8)

exists if v satisfies the dispersion relation

1 !
ir0cZ"k#

g

Z dd "dr0!dd#
v 1 ckhd

, (9)

where n̂1 in Eq. (8) is the amplitude of the density per-
turbation, n̂1 !

R

dd r̂1. For the Gaussian distribution
function, r0 ! nb"2p#21!2 exp"2d2!2d2

0#, where d0 is
the rms relative energy spread, we can write Eq. (9) in
the following form:

"kR#2!3

L
! 2

Ap
2p

Z `

2`

dp pe2p2!2

V 6 p
, (10)

where

L !
nbr0

jhjgd2
0

, (11)

V ! v!ckjhjd0, and the upper (lower) sign in Eq. (10)
refers to the case of positive (negative) h. As always
in stability theory, the integral on the right-hand side of
Eq. (9) defines the dispersion function in the upper half
plane of the complex variablev; the values of this function
for Imv , 0 are obtained by analytic continuation of the
integral into the lower half plane.
The plot of the normalized frequency v as a function of

the wave number k obtained by the numerical solution of
Eq. (10) for the positive value of h is shown in Fig. 1.
The imaginary part of the frequency is positive, and the

beam is unstable, for
kR , 2.0L3!2. (12)

The maximum growth rate is reached at k ! 0.68L3!2!R
and is equal to "Imv#max ! 0.43L3!2cjhjd0!R. Note that
the condition for the instability is easier to satisfy for a
beam with a small energy spread, since L ~ 1!d2

0 . This
condition does not take into account the finite bunch length,

FIG. 1. (Color) The imaginary (Im) and real (Re) parts of the
frequency v as functions of kR!L3!2, for a positive value of h.
For negative values of k, the frequency can be found from the
relation v"2k# ! 2v!"k# which follows from Eq. (9).

the screening effect of the vacuum chamber walls, and the
beam emittance (see below).
The numerical solution for a negative value of h gives a

higher threshold for the instability kR , 0.92L3!2 with the
maximum growth rate "Imv#max ! 0.16L3!2cjhjd0!R at
k ! 0.31L3!2!R.
From the dispersion relation Eq. (9) it is easy to obtain

an explicit expression for the frequency of the instability
in the limit of a cold beam, when k ø L3!2!R,

v ! c
µ

Ar0k4!3nbh

gR2!3

∂1!2

. (13)

For a bunched beam of length sz with N particles in the
bunch, our results obtained in the coasting-beam approxi-
mation can be applied if the reduced wavelength of the
modulation 1!k is much smaller than the bunch length,
ksz ¿ 1. In this case the instability is controlled by
the local value of the linear particle density nb , with the
maximum value of nb , for a Gaussian bunch, equal to
N!

p
2p sz . Since k is limited from above by the require-

ment (12), the microbunching instability can develop if the
bunch length is large enough

sz * 0.5RL23!2. (14)
Another limitation to the theory is introduced by a finite

aperture b of the beam pipe. Assuming a pipe with a per-
fect conductivity, the CSR is suppressed due to the shield-
ing effect at low harmonics with wave numbers k such
that kR & "pR!2b#3!2 [12]. Hence the instability can
only develop for such values of k that 2.0L3!2 . kR *
"pR!2b#3!2. The requirement that the lower limit for the
parameter kR is smaller than the upper one gives another
necessary condition for the instability:

R
b

& L . (15)

If this inequality is not satisfied, finite energy spread in
the beam suppresses the small-scale instability where the
effect of the screening is not essential. Note that for
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the instability threshold is determined at the longest
possible wavelength. However, the growth rate is not
monotonic. This is the result of two opposite mechanisms:
one is the energy modulation growth due to the CSR
impedance and the other is the Landau damping. For
very long wavelength perturbation, the Landau damping
effect is small, hence, we could expand the denominator
of the integrand in Eq. (4) to get

! !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

ic2n0r0!kZ"k#="
q

; (12)

which indicates that #$1 / Im"!# /
!!!!!!!!!!!!

kZ"k#
p

, i.e., the
growth rate will increase for a shorter wavelength per-
turbation, since Z"k# / k", with " > 0. This is shown in
Fig. 4: when we approach from the long wavelength
perturbation to the short wavelength perturbation, the
growth rate increases.

However, this process stops when Landau damping
becomes effective. The finite energy spread in the beam
will produce a phase mixing due to the slippage and this
will destroy density modulation due to the CSR induced
energy modulation. The Landau damping due to the phase
mixing is more serious for short wavelength perturba-
tions. This damping can be seen in the second term of
Eq. (1), or more clearly, in the denominator of the dis-
persion relation in Eq. (4). This is demonstrated in Fig. 4,
the growth rate finally decreases when we approach very
short wavelength, and eventually, the system becomes
stable.

For the KEK ATF prototype damping ring, the cutoff
wavelength would be about $c % 3:1 mm according to
Eq. (10). Taking the dipole CSR impedance alone, for
the single bunch charge in Table I, the instability sets in
for perturbations with wavelengths $ > 2:8 mm. Adding
the wiggler CSR impedance, the electron beam would be
unstable for perturbations with wavelengths $ > 1:9 mm.
Other results are summarized in Table I.

It is interesting to note that in both the NLC and the
ATF damping rings roughly twice as much ISR power is
emitted in the wiggler as in the arc dipoles. However, the
instability threshold is not dramatically impacted by the
additional CSR in the wiggler and decreases by less than a
factor of 2 in each case. This arises because of the very
different low-frequency behavior of the CSR impedances.

We can use a simple scaling analysis to understand this.
According to Eq. (7), the dipole CSR impedance scales as
ZD"k# / k1=3. Similarly, the low-frequency behavior of
the wiggler CSR impedance is [14]

ZW"k# ! %kw
k
k0

"

1$ 2 i
%

log
#
k
k0

$%

(13)

which is accurate enough for practical calculation in k 2
&0; 0:1k0', where k0 is the wiggler fundamental radiation
wave number:

k0 ! 2"2kw="1( K2=2# ; (14)

and the wiggler parameter K is approximately K %
93:4Bw$w, with Bw the peak magnetic field of the wiggler
in units of Tesla and $w the period in meters. Thus, the
wiggler CSR impedance scales as Re!ZW"k#" / "k=k0#,
and Im!ZW"k#" / "k=k0# log"k=k0#, which have a weaker
scaling than ZD"k# / "k=k0#1=3 when "k=k0# ! 0, i.e., the
CSR impedance from the wiggler is weaker than that
from the dipole when we approach the low-frequency
region.

For real design, we also have to consider the coeffi-
cients besides the scaling. To be more explicit, we rewrite
the dipole CSR impedance as

ZD"k# ! $iA
k1=30

R2=3

#
k
k0

$
1=3

: (15)

So, the coefficients which we need to compare are

$iA
k1=30

R2=3
; %kw; and $ 2ikw: (16)

These coefficients are normally on the same order of
magnitude, e.g., according to the parameters in Table I.

One other thing we need to compare is the total dipole
length and the wiggler length, since in this paper, we are
using a distributed impedance model. According to
Eq. (9), we need compare

!R and LW: (17)

Again, they are normally on the same order of magnitude,
e.g., according to the parameters in Table I.

Hence, the above discussion indicates that the wiggler
CSR impedance would be much smaller than the dipole
CSR impedance. This suggests an optimization of the
damping ring design where a larger fraction of ISR is
emitted in the wigglers as will be discussed subsequently.

IV. DAMPING RING OPTIMIZATION

Damping rings are used in linear colliders to attain the
very small transverse emittances that are required to
attain the desired small spot sizes at the collision point.
In the damping rings, the emission of ISR damps the
phase space volume of the injected beams towards the
equilibrium values. An e-folding reduction of the trans-
verse phase space occurs after the emission of ISR energy
comparable to the beam energy.

There are usually three conflicting requirements on the
damping rings: first, the equilibrium emittances must be
small which usually require weak bends and strong focus-
ing; second, the dynamic aperture must be large to accept
the injected beams and this is difficult to attain in a strong
focusing storage ring; and, third, the damping rates must
be fast so that the incoming phase space and transients
can be damped before the beams are extracted and accel-
erated to the collision point.

PRST-AB 6 JUHAO WU et al. 104404 (2003)

104404-5 104404-5

ρ0 (δ = Δp p) = δ (δ 0 )with	
  

the instability threshold is determined at the longest
possible wavelength. However, the growth rate is not
monotonic. This is the result of two opposite mechanisms:
one is the energy modulation growth due to the CSR
impedance and the other is the Landau damping. For
very long wavelength perturbation, the Landau damping
effect is small, hence, we could expand the denominator
of the integrand in Eq. (4) to get

! !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

ic2n0r0!kZ"k#="
q

; (12)

which indicates that #$1 / Im"!# /
!!!!!!!!!!!!

kZ"k#
p

, i.e., the
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However, this process stops when Landau damping
becomes effective. The finite energy spread in the beam
will produce a phase mixing due to the slippage and this
will destroy density modulation due to the CSR induced
energy modulation. The Landau damping due to the phase
mixing is more serious for short wavelength perturba-
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persion relation in Eq. (4). This is demonstrated in Fig. 4,
the growth rate finally decreases when we approach very
short wavelength, and eventually, the system becomes
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For the KEK ATF prototype damping ring, the cutoff
wavelength would be about $c % 3:1 mm according to
Eq. (10). Taking the dipole CSR impedance alone, for
the single bunch charge in Table I, the instability sets in
for perturbations with wavelengths $ > 2:8 mm. Adding
the wiggler CSR impedance, the electron beam would be
unstable for perturbations with wavelengths $ > 1:9 mm.
Other results are summarized in Table I.

It is interesting to note that in both the NLC and the
ATF damping rings roughly twice as much ISR power is
emitted in the wiggler as in the arc dipoles. However, the
instability threshold is not dramatically impacted by the
additional CSR in the wiggler and decreases by less than a
factor of 2 in each case. This arises because of the very
different low-frequency behavior of the CSR impedances.

We can use a simple scaling analysis to understand this.
According to Eq. (7), the dipole CSR impedance scales as
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the wiggler CSR impedance is [14]
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which is accurate enough for practical calculation in k 2
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wave number:
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and the wiggler parameter K is approximately K %
93:4Bw$w, with Bw the peak magnetic field of the wiggler
in units of Tesla and $w the period in meters. Thus, the
wiggler CSR impedance scales as Re!ZW"k#" / "k=k0#,
and Im!ZW"k#" / "k=k0# log"k=k0#, which have a weaker
scaling than ZD"k# / "k=k0#1=3 when "k=k0# ! 0, i.e., the
CSR impedance from the wiggler is weaker than that
from the dipole when we approach the low-frequency
region.

For real design, we also have to consider the coeffi-
cients besides the scaling. To be more explicit, we rewrite
the dipole CSR impedance as
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So, the coefficients which we need to compare are
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These coefficients are normally on the same order of
magnitude, e.g., according to the parameters in Table I.

One other thing we need to compare is the total dipole
length and the wiggler length, since in this paper, we are
using a distributed impedance model. According to
Eq. (9), we need compare

!R and LW: (17)

Again, they are normally on the same order of magnitude,
e.g., according to the parameters in Table I.

Hence, the above discussion indicates that the wiggler
CSR impedance would be much smaller than the dipole
CSR impedance. This suggests an optimization of the
damping ring design where a larger fraction of ISR is
emitted in the wigglers as will be discussed subsequently.

IV. DAMPING RING OPTIMIZATION

Damping rings are used in linear colliders to attain the
very small transverse emittances that are required to
attain the desired small spot sizes at the collision point.
In the damping rings, the emission of ISR damps the
phase space volume of the injected beams towards the
equilibrium values. An e-folding reduction of the trans-
verse phase space occurs after the emission of ISR energy
comparable to the beam energy.

There are usually three conflicting requirements on the
damping rings: first, the equilibrium emittances must be
small which usually require weak bends and strong focus-
ing; second, the dynamic aperture must be large to accept
the injected beams and this is difficult to attain in a strong
focusing storage ring; and, third, the damping rates must
be fast so that the incoming phase space and transients
can be damped before the beams are extracted and accel-
erated to the collision point.
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in units of Tesla and $w the period in meters. Thus, the
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One other thing we need to compare is the total dipole
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using a distributed impedance model. According to
Eq. (9), we need compare
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Again, they are normally on the same order of magnitude,
e.g., according to the parameters in Table I.

Hence, the above discussion indicates that the wiggler
CSR impedance would be much smaller than the dipole
CSR impedance. This suggests an optimization of the
damping ring design where a larger fraction of ISR is
emitted in the wigglers as will be discussed subsequently.

IV. DAMPING RING OPTIMIZATION

Damping rings are used in linear colliders to attain the
very small transverse emittances that are required to
attain the desired small spot sizes at the collision point.
In the damping rings, the emission of ISR damps the
phase space volume of the injected beams towards the
equilibrium values. An e-folding reduction of the trans-
verse phase space occurs after the emission of ISR energy
comparable to the beam energy.

There are usually three conflicting requirements on the
damping rings: first, the equilibrium emittances must be
small which usually require weak bends and strong focus-
ing; second, the dynamic aperture must be large to accept
the injected beams and this is difficult to attain in a strong
focusing storage ring; and, third, the damping rates must
be fast so that the incoming phase space and transients
can be damped before the beams are extracted and accel-
erated to the collision point.
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THE NEXT LINEAR COLLIDER DAMPING RING LATTICES* 
 

A. Wolski†, J.N. Corlett, LBNL, Berkeley, CA 94720, USA 
 

 
Abstract 

We report on the lattice design of the Next Linear 
Collider (NLC) damping rings.  The damping rings are 
required to provide low emittance electron and positron 
bunch trains to the NLC linacs, at a rate of 120 Hz.  We 
present an optical design, based on a theoretical minimum 
emittance (TME) lattice, to produce the required 
normalized extracted beam emittances γεx = 3 mm-mrad 
and γεy = 0.02 mm mrad.  An assessment of dynamic 
aperture and non-linear effects is given.  The positron pre-
damping ring, required to reduce the emittance of the 
positron beam such that it may be accepted by a main 
damping ring, is also described. 

1 DAMPING REQUIREMENTS 
The main damping rings (MDRs) for the NLC are 

designed to accept a beam with normalized emittances 
both horizontally and vertically of 150 mm-mrad.  To 
achieve the specified luminosity, the transverse energy of 
the beam must be damped to normalized emittances of 3 
mm-mrad horizontally, and 0.02 mm-mrad vertically.  The 
positron source produces a beam with much larger 
emittances, up to 30,000 mm-mrad.  The necessary 
aperture of a damping ring that will accept this beam, is 
not compatible with the required extracted emittances and 
damping rate.  We therefore need a pre-damping ring 
(PDR), to reduce the emittance of the positron beam to a 
value comparable with the beam from the electron source.  
The parameters driving the design of the damping rings 
are shown in Table 1.  More details on the damping ring 
complex and subsystems are given in references [1],[2].  

Table 1: Parameters Driving Damping Ring Design 
Beam energy 1.98 GeV 
Collider rep rate 120 Hz 
Bunches per train 190 
Bunch separation 1.4 ns 
Particles per bunch 0.75×1010 

e- beam injected emittance (rms) 150 mm-mrad 
e+ beam injected emittance (edge) 30000 mm-mrad 
Kicker rise/fall time (MDR/PDR) 65/100 ns 
Extracted horizontal emittance (rms) 3.0 mm-mrad 
Extracted vertical emittance (rms) 0.02 mm-mrad 

 
The parameters given in Table 1, and other 

considerations, constrain the lattice designs.  In particular, 
the MDR lattice should have: 

• low natural emittance; 

• low vertical/horizontal emittance ratio; 
• fast transverse damping times; 
• good dynamic aperture, for injection efficiency. 

2 MAIN DAMPING RING LATTICE 

2.1 Parameters 
Raubenheimer and Emma [3] have given an analysis of 

the relationships between the various lattice parameters 
for linear collider damping rings, leading to an optimal 
outline design.  We applied the results of this analysis to 
the NLC, as a starting point for the detailed lattice design. 
 
Table 2: Principal Parameters of the Main Damping Rings 

Energy E 1.98 GeV 
Circumference C 299.792 m 
Number of stored trains  3 
Natural emittance γε0 2.17 mm-mrad 
Tunes νx, νy 27.2616, 11.1357 
Natural chromaticity ξx, ξy -37.12, -28.24 
Momentum compaction α 2.95×10-4 

RF voltage VRF 1.07 MV 
RF acceptance εRF 1.5 % 
Energy spread (rms) σδ 0.091 % 
Bunch length (rms) σz 3.60 mm 
Integrated wiggler field ∫Bw

2ds 106.9 T2m 
Energy loss/turn U0+Uw 247+530 keV 
Damping times τx,y,ε 4.85, 5.09, 2.61 ms 

 
The principal parameters of the main damping rings are 
given in Table 2.  The lattice is a racetrack design, with a 
total of 34 theoretical minimum emittance (TME) arc 
cells (plus four half-cells for matching into the 60 m long 
straight sections).  The number of arc cells allows some 
detuning from the actual minimum emittance condition to 
improve the dynamics.  The length of each cell is fixed by 
the need to keep the circumference, and hence the 
damping time, as low as possible, while allowing enough 
space in the straight sections for the injection/extraction 
systems on one side, and the damping wiggler on the 
other.  The minimum circumference is determined by the 
actual length of each bunch train, and the rise and fall 
time of the injection and extraction kickers. 

To achieve the required damping just from the dipole 
radiation would require unrealistically large dipole fields.  
In the current design, the main arc dipoles have a main 
field of 1.2 T, and a vertically focusing gradient of 6.6 
Tm-1.  A wiggler provides most of the damping; the 
current design uses a hybrid wiggler of peak field 2.15 T, 
period 0.27 m and total length 46 m. 
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EFFECTS OF DAMPING WIGGLERS ON BEAM DYNAMICS IN THE NLC 
DAMPING RINGS* 

 
A. Wolski†, Y. Wu, LBNL, Berkeley, CA 94720, USA 

 
 

Abstract 
To achieve the required damping time in the main 

damping rings for the Next Linear Collider (NLC), a 
wiggler will be required in each ring with integrated 
squared field strength up to 110 T2m [1].  There are 
concerns that nonlinear components of the wiggler field 
will damage the dynamic aperture of the ring, leading to 
poor injection efficiency.  Severe effects from an insertion 
device have been observed and corrected in SPEAR 2 [2].  
In this paper, we describe a model that we have developed 
to study the effects of the damping wiggler, compare the 
predictions of the model with actual experience in the 
case of the SPEAR 2 wiggler, and consider the predicted 
effects of current damping wiggler design on the NLC 
main damping rings. 

1 WIGGLER REQUIREMENTS 
The main damping rings (MDRs) for the NLC are 

designed to reduce the normalized beam emittances from 
150 mm-mrad (horizontally and vertically), to 3 mm-mrad 
horizontally, and 0.02 mm-mrad vertically.  With a 
repetition rate of 120 Hz, and three trains stored per ring, 
the damping must be achieved within 25 ms. The required 
vertical damping time is then 5 ms, and to achieve this 
requires the use of a strong wiggler.  Some parameters 
relating to the wiggler design for the MDRs, are given in 
Table 1.  More details on the damping ring complex and 
subsystems are given in references [1], [2]; the lattice 
design for the main damping rings is described in [3]. 

  Table 1: MDR Damping Wiggler Parameters 
Beam energy 1.98 GeV 
Wiggler peak field 2.15 T 
Wiggler period 0.27 m 
Total wiggler length 46.25 m 
Energy loss/turn from dipoles 247 keV 
Energy loss/pass from wiggler 530 keV 
Damping times τx,y,ε 4.85, 5.09, 2.61 ms 

 
Another principal requirement of the damping rings is 

that they have sufficient dynamic aperture to allow good 
injection efficiency.  Nonlinear components in the wiggler 
field can limit the dynamic aperture, as was recently seen 
at SPEAR 2 [4].  For analysis of the dynamics, it is 
desirable to have a physical model of the wiggler field 
that reproduces the nonlinear components with good 
accuracy, and allows fast symplectic tracking.  Codes 

already exist that numerically integrate the equations of 
motion through the wiggler, but this can take several 
hours, and produces limited analytical information.  We 
have pursued an alternative approach, based on the 
construction of a symplectic integrator for the field 
expanded in a series of modes.  This allows an analysis of 
the dynamic effects of the wiggler to be produced in 
minutes rather than hours, and provides potentially useful 
information connecting the field quality with the 
dynamics, in terms of the mode coefficients. 

The characterization of the wiggler then consists of two 
steps: 

• determine the mode coefficients from (modeled or 
measured) field data; 

• track through the wiggler, using the mode 
coefficients in an appropriate symplectic map. 

2 FITTING THE WIGGLER FIELD 
We consider the case where the magnetic vector 

potential in the wiggler field can be expressed as: 
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where kz=2π/λw, and λw is the wiggler period.  Maxwell’s 
equations are satisfied if we impose the conditions: 

22222
, zxmny knkmk +=  

The potential (1) is not the most general form; we have 
imposed symmetry conditions (i.e. neglected random 
construction errors) to eliminate several sets of modes, for 
example.  Also, we have made the field periodic in x, 
which we can do by setting kx=π/2Lx, where the field is 
known between limits ±Lx.  The field components are 
readily derived from the potential (1).  In particular, we 
see that a wiggler with a purely sinusoidal field variation 
along the z axis has a single n mode, and Σcm1=Bw, where 
Bw is the peak field. 

Imposing the periodicity in x is useful, since it allows us 
to determine the coefficients cmn from field data in the x-z 
plane simply by using a 2-dimensional Fourier transform.  
Representing the field using a finite number of modes will 
give some error, which will be small for y=0, but will 
increase exponentially with y as a result of the hyperbolic 
function in (1).  The error comes largely from the higher 
order modes in the expansion; fortunately, these modes 
make only a small contribution to the fit in the x-z plane, 

___________________________________________  

*Work supported by the US DOE under contract DE-AC03-76SF00098 
†awolski@lbl.gov 

0-7803-7191-7/01/$10.00 ©2001 IEEE. 3798

Proceedings of the 2001 Particle Accelerator Conference, Chicago

4.3 Lattice Design 129

Stairs

Shop

Control 
BPMS

Parts & 
Tools

RF P.S. & 
Controls

KLYS

8047A4575–96

2.5 m

PPS Door

5 m

3 m

PPS Door

26 m Wiggler

2 m

NLC Main Damping Ring Vault

Beam

Waveguides

83 m

Beam

50 m

Figure 4-7. Layout of main damping ring.

microwave instability and it leads to a longer bunch length which is also desirable. Thus, we chose parameters in the
cells to optimize the ratio of for a given bending angle rather than (or ). In this case, the optimal values of
the dispersion at the center of the bending magnet is equal to

(4.20)

This value is actually close the the optimal TME value.

In Figure 4-8, we plot the variation of (solid), which is proportional to , and (dashes), which is proportional
to the ratio of to , versus for the case when . Notice that both curves have minima near the optimum
beta function but do not increase very rapidly as is increased. In practice, we detune the cell so that ;
this reduces the chromaticity. In Figure 4-9, we plot the variation of (solid) and (dashes) against for

. In this case, the optimum occurs at roughly while the optimum occurs around
. We have chosen to optimize the cells to this latter value.

Each TME cell consists of two QF quadrupoles, a single QD quadrupole, and a single bending magnet with a
defocusing gradient. The defocusing gradient in the bending magnets increases both the quantum excitation and .
In a ring without damping wigglers, the increase in is larger than the increase in the excitation and the equilibrium

ZEROTH-ORDER DESIGN REPORT FOR THE NEXT LINEAR COLLIDER
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wavelength that is possible is determined by two effects:
first, the instability wavelength has to be short compared
to the bunch length and, second, the vacuum chamber
causes an exponential suppression of the synchrotron
radiation at wavelengths ! greater than the shielding
cutoff [3],

!c ! 4
!!!

2
p

b"b=R#1=2: (10)

Here, R is the dipole bending radius, and b is the vacuum
chamber half height. The numerical coefficient of Eq. (10)
assumes that the vacuum chamber is made up of two
infinitely wide plates. Different cross sections give differ-
ent numerical factors [24]. Given the previous discussion,
the threshold will be the lowest at the smaller of the bunch
length or the shielding cutoff wavelength.

For the NLC main damping ring, we find that pertur-
bations with wavelengths ! > 3:5 mm are not stable due
to the dipole CSR impedance alone. Adding the CSR
impedance from the wiggler causes perturbations with
wavelengths ! > 2:6 mm to be unstable. In Fig. 3, the
threshold particle number is plotted as a function of the
perturbation wavelength. Next, in Fig. 4, the growth rate,
which is defined as the inverse of the time needed for the
perturbation to grow by a factor of e,

1

"
$ Im"!#ckj#j$0 (11)

is plotted versus the perturbation wavelength. Based on

the parameters in Table I and Eq. (10), the shielding cutoff
wavelength is computed to be !c % 4:9 mm. At this cut-
off wavelength, the threshold currents and growth time
are summarized in Table I. The growth time is signifi-
cantly faster than the synchrotron period, in agreement
with the analysis for a microwavelike instability.

It is clearly seen that the threshold current decreases as
we approach the longer wavelength perturbations, hence,
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FIG. 3. (Color) The threshold particle number as a function of
the CSR wavelength for the NLC main damping ring. The
dashed curve is the result for the dipoles only, while the solid
curve takes into account the contributions from the dipoles and
the wigglers. The vertical straight line is the approximate cutoff
wavelength according to Eq. (10). The horizontal straight line is
the nominal number of particles per bunch: 0:75& 1010.
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FIG. 4. (Color) The growth rate as a function of the CSR
wavelength for the NLC main damping ring. The dashed curve
is the result for the dipoles only, while the solid curve takes
into account the contributions from the dipoles and the wig-
glers. The vertical straight line is the approximate cutoff wave-
length according to Eq. (10).

0 1 2 3 4
Normalized wave number

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Im
ag

in
ar

y 
pa

rt
 o

f t
he

 n
or

m
al

iz
ed

 fr
eq

ue
nc

y

0.000 0.004 0.008
−2.0

−1.0

0.0

1.0

FIG. 2. (Color) The imaginary part of the normalized fre-
quency ! as a function of the normalized wave number k=k0
for the NLC main damping ring with negative momentum
compaction where k0 is the on-axis wiggler fundamental ra-
diation wave number defined in Eq. (14). The solid curve
includes the entire CSR impedance while the dotted and
dashed curves include either the steady state dipole CSR
impedance or the wiggler CSR impedance, respectively. The
inset shows a blowup of the low frequency region where the
beam is unstable.
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To	
  obtain	
  the	
  same	
  results	
  as	
  in	
  the	
  paper,	
  somehow	
  we	
  need	
  to	
  slightly	
  adjust	
  the	
  rms	
  	
  
energy	
  spread	
  from	
  9.09	
  ×	
  10-­‐4	
  to	
  8.6	
  ×	
  10-­‐4.	
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Underlying	
  physics	
  
•  Region	
  (I):	
  long	
  wavelength,	
  negligible	
  Landau	
  damping	
  
	
  
•  Region	
  (II):	
  shorter	
  wavelength,	
  more	
  Landau	
  damping,	
  more	
  phase	
  

mixing	
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the instability threshold is determined at the longest
possible wavelength. However, the growth rate is not
monotonic. This is the result of two opposite mechanisms:
one is the energy modulation growth due to the CSR
impedance and the other is the Landau damping. For
very long wavelength perturbation, the Landau damping
effect is small, hence, we could expand the denominator
of the integrand in Eq. (4) to get

! !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

ic2n0r0!kZ"k#="
q

; (12)

which indicates that #$1 / Im"!# /
!!!!!!!!!!!!

kZ"k#
p

, i.e., the
growth rate will increase for a shorter wavelength per-
turbation, since Z"k# / k", with " > 0. This is shown in
Fig. 4: when we approach from the long wavelength
perturbation to the short wavelength perturbation, the
growth rate increases.

However, this process stops when Landau damping
becomes effective. The finite energy spread in the beam
will produce a phase mixing due to the slippage and this
will destroy density modulation due to the CSR induced
energy modulation. The Landau damping due to the phase
mixing is more serious for short wavelength perturba-
tions. This damping can be seen in the second term of
Eq. (1), or more clearly, in the denominator of the dis-
persion relation in Eq. (4). This is demonstrated in Fig. 4,
the growth rate finally decreases when we approach very
short wavelength, and eventually, the system becomes
stable.

For the KEK ATF prototype damping ring, the cutoff
wavelength would be about $c % 3:1 mm according to
Eq. (10). Taking the dipole CSR impedance alone, for
the single bunch charge in Table I, the instability sets in
for perturbations with wavelengths $ > 2:8 mm. Adding
the wiggler CSR impedance, the electron beam would be
unstable for perturbations with wavelengths $ > 1:9 mm.
Other results are summarized in Table I.

It is interesting to note that in both the NLC and the
ATF damping rings roughly twice as much ISR power is
emitted in the wiggler as in the arc dipoles. However, the
instability threshold is not dramatically impacted by the
additional CSR in the wiggler and decreases by less than a
factor of 2 in each case. This arises because of the very
different low-frequency behavior of the CSR impedances.

We can use a simple scaling analysis to understand this.
According to Eq. (7), the dipole CSR impedance scales as
ZD"k# / k1=3. Similarly, the low-frequency behavior of
the wiggler CSR impedance is [14]

ZW"k# ! %kw
k
k0

"

1$ 2 i
%

log
#
k
k0

$%

(13)

which is accurate enough for practical calculation in k 2
&0; 0:1k0', where k0 is the wiggler fundamental radiation
wave number:

k0 ! 2"2kw="1( K2=2# ; (14)

and the wiggler parameter K is approximately K %
93:4Bw$w, with Bw the peak magnetic field of the wiggler
in units of Tesla and $w the period in meters. Thus, the
wiggler CSR impedance scales as Re!ZW"k#" / "k=k0#,
and Im!ZW"k#" / "k=k0# log"k=k0#, which have a weaker
scaling than ZD"k# / "k=k0#1=3 when "k=k0# ! 0, i.e., the
CSR impedance from the wiggler is weaker than that
from the dipole when we approach the low-frequency
region.

For real design, we also have to consider the coeffi-
cients besides the scaling. To be more explicit, we rewrite
the dipole CSR impedance as

ZD"k# ! $iA
k1=30

R2=3

#
k
k0

$
1=3

: (15)

So, the coefficients which we need to compare are

$iA
k1=30

R2=3
; %kw; and $ 2ikw: (16)

These coefficients are normally on the same order of
magnitude, e.g., according to the parameters in Table I.

One other thing we need to compare is the total dipole
length and the wiggler length, since in this paper, we are
using a distributed impedance model. According to
Eq. (9), we need compare

!R and LW: (17)

Again, they are normally on the same order of magnitude,
e.g., according to the parameters in Table I.

Hence, the above discussion indicates that the wiggler
CSR impedance would be much smaller than the dipole
CSR impedance. This suggests an optimization of the
damping ring design where a larger fraction of ISR is
emitted in the wigglers as will be discussed subsequently.

IV. DAMPING RING OPTIMIZATION

Damping rings are used in linear colliders to attain the
very small transverse emittances that are required to
attain the desired small spot sizes at the collision point.
In the damping rings, the emission of ISR damps the
phase space volume of the injected beams towards the
equilibrium values. An e-folding reduction of the trans-
verse phase space occurs after the emission of ISR energy
comparable to the beam energy.

There are usually three conflicting requirements on the
damping rings: first, the equilibrium emittances must be
small which usually require weak bends and strong focus-
ing; second, the dynamic aperture must be large to accept
the injected beams and this is difficult to attain in a strong
focusing storage ring; and, third, the damping rates must
be fast so that the incoming phase space and transients
can be damped before the beams are extracted and accel-
erated to the collision point.

PRST-AB 6 JUHAO WU et al. 104404 (2003)
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  Note:	
  beam	
  and	
  lapce	
  parameters	
  are	
  provided	
  by	
  Fanglei.	
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Name	
   Value	
   Unit	
  

Circumference	
   2.154	
   km	
  

Dipole	
  radius	
   64	
  (average)	
   m	
  

Total	
  bending	
  angle	
   540	
   deg	
  

Momentum	
  compacCon	
  factor,	
  αc	
   0.00215	
  

Wiggler	
  peak	
  field	
   1.6	
   Tesla	
  

Wiggler	
  period	
   0.2	
   m	
  

Wiggler	
  total	
  length	
   24	
   m	
  

Beam	
  energy	
   10	
   GeV	
  

ParCcles	
  in	
  a	
  bunch	
   5	
  ×	
  1010	
  (vary)	
  

RMS	
  fracConal	
  energy	
  spread	
   1.14	
  ×	
  10-­‐3	
  



ApplicaCon:	
  MEIC	
  e-­‐Ring	
  
•  Numerical	
  simulaCon	
  shows	
  that,	
  based	
  on	
  the	
  given	
  parameters,	
  there	
  is	
  

no	
  such	
  instability	
  found	
  in	
  the	
  e-­‐Ring	
  system.	
  
•  Comparing	
  MEIC	
  e-­‐Ring	
  with	
  NLC	
  damping	
  ring,	
  we	
  found:	
  

–  dipole	
  radius	
  is	
  much	
  larger,	
  causing	
  smaller	
  CSR	
  effect	
  
–  rms	
  fracConal	
  energy	
  spread	
  is	
  a	
  bit	
  larger,	
  resulCng	
  in	
  more	
  Landau	
  damping	
  
–  smaller	
  fracCon	
  of	
  wiggler	
  total	
  length	
  to	
  the	
  whole	
  ring	
  (or,	
  much	
  larger	
  ring	
  

circumference)	
  

•  What	
  if	
  the	
  energy	
  spread	
  becomes	
  half	
  of	
  the	
  given	
  number?	
  (Nb	
  =	
  5	
  ×	
  
1010,	
  σδ	
  =	
  0.57	
  ×	
  10-­‐3)	
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ApplicaCon:	
  MEIC	
  e-­‐Ring	
  
•  Would	
  the	
  instability	
  be	
  suppressed	
  by	
  shielding	
  of	
  vacuum	
  chamber?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [R.	
  Warnock	
  and	
  P.	
  Morton,	
  Part.	
  Accel.	
  25,	
  113	
  (1990)]	
  
•  Given	
  the	
  dipole	
  radius	
  R	
  =	
  64	
  m	
  and	
  Nb	
  =	
  5	
  ×	
  1010,	
  to	
  effecCvely	
  suppress	
  the	
  

instability	
  requires	
  the	
  pipe	
  radius	
  b	
  ≤	
  14	
  cm,	
  which	
  can	
  be	
  easily	
  achieved.	
  
•  Assume	
  pipe	
  radius	
  b	
  =	
  3	
  cm	
  (which	
  is	
  a	
  usual	
  case?),	
  what	
  about	
  the	
  intensity	
  

threshold,	
  given	
  σδ	
  =	
  0.57	
  ×	
  10-­‐3?	
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Name	
   Value	
   Unit	
  

Cutoff	
  wavelength	
  (assume	
  b	
  =	
  3	
  cm)	
   3.67	
   mm	
  

Intensity	
  threshold	
  at	
  cutoff	
  (wiggler	
  on)	
   25	
  ×	
  1010	
  

Growth	
  Cme	
  at	
  cutoff	
  (wiggler	
  on)	
  	
  
assume	
  Nb	
  =	
  27	
  ×	
  1010	
  

22.7	
   μsec	
  

Synchrotron	
  oscillaCon	
  frequency	
   1~10	
  (assume)	
   kHz	
  

Longitudinal	
  radiaCon	
  damping	
  Cme	
   4.12	
   msec	
  
	
  



Summary	
  
•  By	
  solving	
  the	
  dispersion	
  relaCon	
  derived	
  from	
  (linearized)	
  Vlasov	
  

equaCon,	
  we	
  can	
  esCmate	
  the	
  instability	
  growth	
  rate,	
  given	
  a	
  set	
  of	
  beam	
  
parameters.	
  

•  Given	
  further	
  the	
  informaCon	
  of	
  vacuum	
  chamber,	
  i.e.	
  pipe	
  radius	
  b,	
  we	
  
can	
  esCmate	
  the	
  threshold	
  intensity	
  Nb,th.	
  

•  Since	
  the	
  calculaCon	
  is	
  fast,	
  it	
  can	
  be	
  used	
  to	
  opCmize	
  the	
  e-­‐Ring	
  design	
  
with	
  inserCon	
  of	
  damping	
  wiggler.	
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Possible	
  improvement	
  of	
  the	
  presented	
  work	
  

•  e-­‐Ring	
  opCmizaCon	
  with	
  damping	
  wiggler	
  [see	
  SecCon	
  IV	
  of	
  J.	
  Wu	
  et	
  al.,	
  
PRST-­‐AB	
  6,	
  104404	
  (2003)]	
  

•  1-­‐D	
  linearized	
  Vlasov	
  formulaCon	
  è	
  2-­‐D	
  
–  to	
  account	
  for	
  Landau	
  damping	
  effect	
  from	
  finite	
  transverse	
  emiHance	
  

•  coasCng	
  beam	
  approximaCon	
  è	
  bunched-­‐beam	
  effect	
  should	
  be	
  taken	
  
into	
  account	
  

•  only	
  {steady-­‐state	
  CSR	
  +	
  wiggler}	
  impedances	
  are	
  included	
  è	
  {entrance	
  
transient	
  +	
  exit	
  propagaCon	
  effects}	
  of	
  CSR	
  can	
  be	
  considered,	
  as	
  well	
  as	
  
{wall	
  shielding	
  effect}	
  should	
  be	
  incorporated	
  

•  Vlasov	
  equaCon	
  è	
  Vlasov-­‐Fokker-­‐Planck	
  equaCon	
  (VFP)	
  
–  VFP	
  takes	
  into	
  account	
  the	
  effect	
  of	
  synchrotron	
  radiaCon	
  induced	
  quantum	
  excitaCon	
  

•  lumped	
  model	
  è	
  distributed	
  model	
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20	
  

an instability while the results for the ATF are very
similar to those of the NLC damping ring shown in Fig. 1.

One interesting effect can be seen at the wiggler radia-
tion fundamental frequency and the odd harmonics where
the ring is actually stabilized by the wiggler CSR imped-
ance. This is opposite to the single-pass behavior through
a wiggler where there is an instability at the wiggler
fundamental frequency usually referred to as the free-
electron laser (FEL) instability. The effect will be dis-
cussed further in Appendix A but is a direct result of the
positive sign of the momentum compaction in the ring. To
illustrate this, Fig. 2 is a plot for the NLC damping ring
with identical wiggler and arc parameters but the mo-
mentum compaction is assumed to be opposite in sign.
Here, one can see that at low frequencies the growth is
slightly lower. In contrast, the wiggler CSR impedance
makes the system less stable at the wiggler fundamental
frequency unlike the case with positive momentum com-
paction. Furthermore, if the magnitude of the momentum
compaction is reduced, the system will become unstable
similar to that illustrated in Appendix B. This is similar
to the FEL instability; however, it is also noted in
Appendix A that our theory does not fully treat the
FEL instability.

As seen in Figs. 1 and 2, the instability is most im-
portant at relatively low frequency. The longest instability
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FIG. 1. (Color) The imaginary part of the normalized fre-
quency ! as a function of the normalized wave number k=k0
for the NLC main damping ring [16], where k0 is the on-axis
wiggler fundamental radiation wave number defined in Eq. (14).
The solid curve includes the entire CSR impedance while the
dotted and dashed curves include either the steady state dipole
CSR impedance or the wiggler CSR impedance, respectively.
The inset shows a blowup of the low frequency region where
the beam is unstable.

TABLE I. Parameters and results for the NLC main damping ring [16], the TESLA damping
ring [17], and the KEK ATF prototype damping ring [18]. The parameter Fw, defined in
Eq. (19), is the ratio of the ISR power emitted in the wiggler to that emitted in the arc bending
magnets.

NLC TESLA ATF

Circumference C=km 0.3 17 0.14
Dipole radius R=m 5.5 80 5.7
Total bending angle "=2! 1 5=3 1
Momentum compaction "=10!4 2.95 1.2 19
Synchrotron frequency Qs=kHz 3.5 0.8 17.4
Extracted X emittance #$x=10!6 m 3 8 5
Extracted Y emittance #$y=10!8 m 2 2 5
Energy E=Gev 1.98 5 1.3
Energy rms spread %0=10!4 9.09 9 6
Bunch rms length &z=mm 3.6 6 5
Particles in a bunch Ne=1010 0.75 2 1
Wiggler peak field Bw=T 2.15 1.5 1.88
Wiggler period 'w=m 0.27 0.4 0.4
Wiggler total length Lw=m 46.24 432 21.2
Wiggler ( function (x;w/m 1.87 6.67 6
Pipe radius b=cm 1.6 2 1.2
Fw 2.2 13.4 1.8

Cutoff wavelength 'c=mm 4.9 1.8 3.1
Threshold at cutoff (wiggler off) Nt=1010 0.60 27.44 0.95
Threshold at cutoff (wiggler on) Nt=1010 0.52 24.56 0.76
Growth time at cutoff (wiggler off) )=*s 54.9 N/A 34.3
Growth time at cutoff (wiggler on) )=*s 32.9 N/A 6.5
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