

CRABBING AND FREQUENCY IN THE MEIC

Alejandro Castilla CASA/CAS-ODU acast020@odu.edu

2

Outline

- Motivation/History.
- **RF-Dipole Vs Elliptical Cavities.**
- Significant Figures as Function of Frequency.
- RF-Dipole [proof of principle] & Test Results.
- P.o.P Vs. Real Cavity Design.
- HOM Damping Scheme (the LHC case).
- Discussion....

Motivation 1 (crabbing)

- The luminosity "turning knobs" come with a trade-off.
- Restoration of geometrical reduction is a "preferable" path.

Motivation 2 (freq. change)

• The PEP-II RF systems [476 MHz] offer a considerable hardware advantage.

*SLAC PEP-II archives.

Crabbing & Frequency

• The voltage needed to restore a 50 mrad crabbing angle:

MEIC group meeting 12 March 2015.

Crabbing & Frequency (cont.)

The case of the rf dipole geometry, at constant field and

History (rf dipole)

S. De Silva, ODU-Jlab 2012.

Aspects of optimization

- Lower and balanced peak surface fields
- Stability of the design
 - Cylindrical shape is preferred to reduce flat surfaces
- Cavity processing
 - Curved end plates for cleaning the cavity
- Wider separation in Higher Order Mode (HOM) spectrum
- Multipacting

A Sense for Sizes

Significant Figures

- Realistic models of elliptical cavities will include bigger beam pipe apertures to extract the HOMs.
- RF-Dipole has lower and more balanced Ep/Bp.

Significant Figures (cont. 1)

- Single cell (P.o.P) shunt impedances.
- More important than just the frequency is the beam aperture to effective length ratio.

Significant Figures (cont. 2)

- The residual resistance of
 Nb is a function of frequency and temperature.
- Therefore Q_0 is as well:
- > Higher frequency = lower Q_0 .
- > Higher temperature = lower Q_0 .

RF-Dipoles (proof of principle)

Frequency	499.0*	400.0*	750.0	MHz	
Aperture Diameter (d)	40.0	84.0	60.0	mm	
d/(λ/2)	0.133	0.224	0.3		
LOM		None		MHz	
Nearest HOM	777.0	589.5	1062.5	MHz	
E_p^*	2.86	3.9	4.29	MV/m	
B_p^{*}	4.38	7.13	9.3	mT	
B_p^*/E_p^*	1.53	1.83	2.16	mT/ (MV/m)	
$[R/Q]_T$	982.5	287.0	125.0	Ω	
Geometrical Factor (<i>G</i>)	105.9	140.9	136.0	Ω	
$R_T R_S$	1.0×10 ⁵	4.0×10 ⁴	1.7×10 ⁴	Ω^2	
At $E_T^* = 1$ MV/m					

*S. De Silva, ODU-Jlab 2014.

A. Castilla, CASA/CAS-ODU

499 MHz Deflecting Cavity for Jefferson Lab 12 GeV Upgrade*

400 MHz Crabbing Cavity for LHC HiLumi Upgrade*

750 MHz Crabbing

Cavity for MEIC at

Jefferson Lab

35 cm

19 cm MEIC group meeting 12 March 2015.

RF- Dipoles

- No Lower Order Modes.
- Far separation with closest mode.
- Field flatness can be "tailored".

*On IPAC2013 Proceedings.

A. Castilla, CASA/CAS-ODU

Test Results (P.o.P)

A. Castilla, CASA/CAS-ODU

MEIC group meeting 12 March 2015.

Beyond a P.o.P.

17

RF-Dipole Multi Cell

- PROs: Shorter cavity and cryomodule length, [R/Q] scales with number of cells.
- CONs: Similar Order Modes go as number of cells.

*S. De Silva in SRF2013 proceedings.

MEIC group meeting 12 March 2015.

ANL Quasi-WG

• 2.815 GHz.

A. Castilla, CASA/CAS-ODU

• RT Rs = $6.77 \times 10^4 \Omega$.

*Z. A. Conway WEPRI050 in IPAC2014 proceedings.

Funding

- MEIC Crab: 1 Fulltime PhD. Student for the past "3 1/2 years"
 - ODU and Niowave, Inc. SBIR/STTR Phase I and II
 - JSA through ODURF
- Jefferson Lab 12 GeV Separator: 1 PhD. Student
 - JSA through ODURF
- LHC Crab: 1 to 2 PhDs and 1 to 2 Postdocs
 - > ODU and Niowave, Inc. SBIR/STTR Phase I and II
 - > LARP
- Next?
 - > ODU for NP-DOE project, LDRD?

References

- S. U. de Silva PhD Thesis, College of Science, ODU. (2014)
- S. U. de Silva and J. R. Delayen, PRSTAB 16, 012004 (2013).
- S. U. de Silva and J. R. Delayen, PRSTAB 16, 082001 (2013).

+ countless conference proceedings, internal reports, and technical notes.....

Extras

LCLS II SRF-Dipole Spreader

SRF Dipole preliminary design

RF Fields and Surface Fields

S. De Silva, et al. Dec 2013.

A. Castilla, CASA/CAS-ODU

- Beam aperture of 40 mm
 - Considering cavity processing
 - Low wakefield impedance budget
- Any dimensional constraints ?

	SC RFD Cavity	Units
Frequency	325	MHz
Nearest HOM	508	MHz
V_T^*	0.46	MV
E_p^{*}	2.6	MV/m
B_p^*	3.6	mT
B_p^*/E_p^*	1.4	mT/ (MV/m)
U^*	0.049	J
$[R/Q]_T$	2133	Ω
Geometrical Factor	91.5	Ω
$R_T R_S$	1.95×10 ⁵	Ω^2
At $E_T^* = 1$ MV/m		

MEIC group meeting 12 March 2015.