BeAGLE/(old)PyQM update

Liang Zheng & Mark D. Baker 27-OCT-2017

First the good news

¹³¹Xe with Z=54

- By adding a LOT of FSI, we can ~ match the data.
 - Recall: typical values are qhat ~0.36 (GeV/fm²) τ₀ = 5-9 fm/c
- Even so, the MC is flatter than the data.
- Z = atomic number z = E_h/v (in target rest frame)

27-Oct.-2017

The puzzle

With less FSI (low qhat, hi τ_0): The ratio wants to rise with z and generally is above 1!

Ratio is
$$(N_{\pi+}/N_{ev})_{Xe} / (N_{\pi+}/N_{ev})_{D}$$

First thought - isospin

- Data from HERMES shows that leading π + >> π and R_{π +}(p/D) increases at high z.
- This is all natural if you think about the properties of u vs. d quarks, and remember that we are mostly in the valence region.
 - LO-DIS hits $u(\overline{u})$ 4x more often than a $d(\overline{d})$, and a leading π + requires a leading u or a \overline{d} .

More pions at high z for p vs. D

• Note: this is a bit diluted because it mixes the minority π - in as well as the π +

•But it makes the point that Pythia is reasonable.

The p/D IS mostly isospin

KTAUGE=0 NO INC. & Qhat=0 should be no FSI

Xe/D isospin effect is not huge and goes the wrong way.

131 Xe with Z=54 (iso-)Xe ¹³¹ Xe with Z=66 = ¹³¹**D**v

7/A = 0.412

LZ+MDB

How about DIS only?

All processes

LODIS only

The effect (Xe/D rises with z) is slightly bigger in the LODIS case.

LZ+MDB

Nuclear pdf effect?

x {trueNu>6&&trueW2>4}

Conclusion

- R(z) is not that straightforward.
- Turning off qhat and INC does not lead to flat R(z) for Xe/D.
- Advice welcome.
- Stay tuned...